STM32CubeF1/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_q15.c

172 lines
5.3 KiB
C

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_mat_scale_q15.c
* Description: Multiplies a Q15 matrix by a scalar
*
* $Date: 27. January 2017
* $Revision: V.1.5.1
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @addtogroup MatrixScale
* @{
*/
/**
* @brief Q15 matrix scaling.
* @param[in] *pSrc points to input matrix
* @param[in] scaleFract fractional portion of the scale factor
* @param[in] shift number of bits to shift the result by
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*
* @details
* <b>Scaling and Overflow Behavior:</b>
* \par
* The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.15 format.
* These are multiplied to yield a 2.30 intermediate result and this is shifted with saturation to 1.15 format.
*/
arm_status arm_mat_scale_q15(
const arm_matrix_instance_q15 * pSrc,
q15_t scaleFract,
int32_t shift,
arm_matrix_instance_q15 * pDst)
{
q15_t *pIn = pSrc->pData; /* input data matrix pointer */
q15_t *pOut = pDst->pData; /* output data matrix pointer */
uint32_t numSamples; /* total number of elements in the matrix */
int32_t totShift = 15 - shift; /* total shift to apply after scaling */
uint32_t blkCnt; /* loop counters */
arm_status status; /* status of matrix scaling */
#if defined (ARM_MATH_DSP)
q15_t in1, in2, in3, in4;
q31_t out1, out2, out3, out4;
q31_t inA1, inA2;
#endif // #if defined (ARM_MATH_DSP)
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch */
if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif // #ifdef ARM_MATH_MATRIX_CHECK
{
/* Total number of samples in the input matrix */
numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
#if defined (ARM_MATH_DSP)
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* Loop Unrolling */
blkCnt = numSamples >> 2;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while (blkCnt > 0U)
{
/* C(m,n) = A(m,n) * k */
/* Scale, saturate and then store the results in the destination buffer. */
/* Reading 2 inputs from memory */
inA1 = _SIMD32_OFFSET(pIn);
inA2 = _SIMD32_OFFSET(pIn + 2);
/* C = A * scale */
/* Scale the inputs and then store the 2 results in the destination buffer
* in single cycle by packing the outputs */
out1 = (q31_t) ((q15_t) (inA1 >> 16) * scaleFract);
out2 = (q31_t) ((q15_t) inA1 * scaleFract);
out3 = (q31_t) ((q15_t) (inA2 >> 16) * scaleFract);
out4 = (q31_t) ((q15_t) inA2 * scaleFract);
out1 = out1 >> totShift;
inA1 = _SIMD32_OFFSET(pIn + 4);
out2 = out2 >> totShift;
inA2 = _SIMD32_OFFSET(pIn + 6);
out3 = out3 >> totShift;
out4 = out4 >> totShift;
in1 = (q15_t) (__SSAT(out1, 16));
in2 = (q15_t) (__SSAT(out2, 16));
in3 = (q15_t) (__SSAT(out3, 16));
in4 = (q15_t) (__SSAT(out4, 16));
_SIMD32_OFFSET(pOut) = __PKHBT(in2, in1, 16);
_SIMD32_OFFSET(pOut + 2) = __PKHBT(in4, in3, 16);
/* update pointers to process next sampels */
pIn += 4U;
pOut += 4U;
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4U;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = numSamples;
#endif /* #if defined (ARM_MATH_DSP) */
while (blkCnt > 0U)
{
/* C(m,n) = A(m,n) * k */
/* Scale, saturate and then store the results in the destination buffer. */
*pOut++ =
(q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> totShift, 16));
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixScale group
*/