From f75ec205fc7fca139b60d1dc2614b636bdf89688 Mon Sep 17 00:00:00 2001 From: "lion.chan" Date: Wed, 7 Sep 2022 20:24:48 +0800 Subject: [PATCH] =?UTF-8?q?=E6=B7=BB=E5=8A=A0=E6=8B=89=E6=A0=BC=E6=9C=97?= =?UTF-8?q?=E6=97=A5=E6=8F=92=E5=80=BC.?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: lion.chan --- Algorithm/DSP/img/拉格朗日插值/001.png | Bin 0 -> 12135 bytes Algorithm/DSP/拉格朗日插值.md | 178 +++++++++++++++++- Software/Applications/KiCAD/KiCAD_简要说明.md | 2 + .../Language/LaTex/LaTex_数学公式.md | 38 ++++ 4 files changed, 217 insertions(+), 1 deletion(-) create mode 100644 Algorithm/DSP/img/拉格朗日插值/001.png diff --git a/Algorithm/DSP/img/拉格朗日插值/001.png b/Algorithm/DSP/img/拉格朗日插值/001.png new file mode 100644 index 0000000000000000000000000000000000000000..314ef28d508f773ee8aa2126b381db5b52dd4304 GIT binary patch literal 12135 zcmd72X*`=<*EpIEs;Hq=6h(XYMoVecRC8;nwu+i75vryTp{7L5t*Pdg8&zYdSz=0} z#LyaBikL}6s%nfFiUcwIb3e~{&+nXX=i7TeT)*quYuIaFYwfl7T6?d!rzVEnoFbe6 z0D$|^Lw$1q-~^5J7@j@Df+Q+l^kcnF_?a8(0?-4OmsyR|ZugDv0|2!tTnCP9tTxBX zhqf#to{oQ?6FuH#&Me>se}iZK7T&J@2uEKRfT6F8imEQ>{c=8^t=%RqY? znY+evK6lY)t4@!mK2T-Vm-_JG>3{C=T|EuuZ=^5X?Gf_};;mx;iPs^J=T_}4zF>ZaxI2ceHY$;{t zwI0rd=B=%luH0A}30>D}@XlXE_ZS1>048>f-nfC%Zc zFaSXFKI9bOCx@;m0AR{TWRbr4UnF(DgK?PNd3>M)0Q_{8$1o1|jX}O0E4$|bfR}fK zh-6-E&tv-Pjm>NS#ow~6Yc~;A=ngxM)#(HQ01+&n!5kIEb2LM7in#X)03fxTFdm3I z35xb%{pueV8H{osO*i|08stEnY$Eg&;Pw>@B(1w1>}V$nh&YkOLHqrGBNUOjmj~hh zVL#(6h2iS?zo;I%>f&E&k_5W3Cjf7q|H6#?5BozYT@Bd(1EK7N8prjHg}3yYh$@yJ z*Rp2dH^K*;-<-|FP}3Q}6}JC>TH=3wD*S&KK!mBuDz-E){94#kw9aJZVDocB-%Y*1 z1l9yL&6#fbzTn_fdbpzBj6B)cL89$PHxLyK=eRd6urw}yw~=X*tx!!0g1XB|kR21; z;I_P9X>u$#s9Rft<3rj*@YJ1MAMWJ!=Aj1zXoZ8JJ1p;UCYlAWR&2ueD@sw?YQbOD z4yP|=H_u|#Lv@t+S>2*u{!*n6Gw`sn-t5&TWitKHhNmhJ&?KiCyFl-N51f;*MALBycP^Qoj|9hC$O z1gZYuJ{8!BMUZe;zJ+6?ACjhdK$ z5|iei-1b9)?^-8UU1O1#^GudR&qaQ@>^*YfL^cUK(0%5sM#xV6A&Ksl*z_ZohjwpG z8LxG2b`w6N$Nnox&j+a`1xfG8{>k>Z^k)W zOiD7WM=P#g zlgM`*$wZJWm_`BhC(3@9fCS-A`Os@R+9d6kn~j%x<#0!F;dOI|vE+K3d8WTWqmt3A z&Yudoz1fg$v+T-(iCy|BW_(nr<}z&7HCTG)qz)hP?KTZVl{Uq=L-Vnrv2fBjI-%VQ z=LpuA69SZ_*fZ$@BSl`Tf4LN-=hVAd8*|_UaBnHNT!%cT(v=;4!O3(=nB>e+Jj}i% z8aU1P2q_Xmi#5v-^E6;DHV)VrnTqb*wz`mO+bb}|$WtMWuyq}|!Kuw_>wgdIo)|S8 zNY>nA&=DX8aaJ#O6}zZZqV;qQRQkw$i-uO6%aoXO7CMbu=+gQgSvwe%|2Tv^Xtyg~ z1CCo4NdH<{DApYQKKBl~FK9`G!GlbS5T$VP{0iiX=sqi?w>K@NaY@Hy1n=00T5l_| z8L+q47>NOIX=#Xim-pXVg)XKCyI-n{Aw0MuPU(FPIX>bIuhD7?8-Z)?BnIg0)}Rg- z8rlcHrHWd|8l+flYrcCGN~t#}>YnVpDvg|9&0?x9rZ_@lc2}2A8KsZ^{Hd2YRUSR} zbK?w>Jd{^wB{A`-zI#y`Ov&!%67;iO|YYIib`n2r^3VPN{t9%g9x6 z5@!t4g;|nJCf9ky>N;Y@u|^#P{D3%zMCIlBw9U$o_wS?HTG}Vswn_!T!d@1#KopFv z>G4(A2=wCkz6fI{MYB~ajP0FRPhP9C-9t&uN39!Na2HL#gI*({scB^p%;9kcLt~$x zNgQ*i>#6u$F*j+tR%4XmUE6Thv-&*oECwBXK+rJUKVFb86TrF8+R3vu1E)E?vE$G^ z`+H8OrGHdwlXPrX_iSXdwqLdLh*e=4bL+3MkE~B{xAC#~r7&Z6;Et%{2@N}eBTg^u zjKFWePYqqs*9$SY_9<-CSe-Q#Z+3BftusPU6+mH$RJw%`DD=9JY`2b@>g|ls1Snl# z;eim@nnj+f-tC|UWAxR}0v}N4JcmBubV1CM1xF^Wo2NkG9YUTjK96^t#JkR=y~_NM z8{$++-fTO%5oVc8A^Gu6JLzcuXhy^mV&+*sUF!%L#AGA7*bPl5erC_HlP(6O&nP)K zP3$+hCOPsNkmoSC_g2U2Dd89$8bwIwPv2&)1MYnhYmXRQ!**1AVO zrv*E2q;lAe^b!KjYBH~aKy@YJS8pO*0^K~BKE{%0G(in2FKhrK9o@FRdG)R$8@HY%_NoY-Hb-rX?Q^jG;D z_ExGsxrHXQIS1UHVxWb+JMi%FWiPj|zc6Nb8&8@JjM_)JQEg6Y zJ5y?o(ItG(N=KtIr>W|B_Pn(7(X}ud(%Otfn|C(uq>p_an4Xyrp++9b$P&jX&g0ha0QD6&{ zL~*xR&!RJ4Nq%@2V?E+#EnR%fAS34F#MOOnikLG80?Z%|%%v~4Nwun;Bkj*gpQ|Uo z+=v^uJAO^R3rZV(v-k#J&#Yfs(3ehWfi&3N?T*O}FM`S81ev64TH#NsiNm31GjfZi z!mBGY75?3yfwgGK%I8*BRNu&G1|ac*L5<*LFI}LZE2hZL%J&WNy1JmhFUsk@L5gg~ zxYkTVmmq}H-cL7aE_Ya4gx5=%FYIH&E0c@Ff8f#l1lLf-tvE6WO3uem}tph+X|^{ zOjJOuO~8nYma9svX@_ylo>petDBHtn-z~r84gU<sZ4psyrrt3mVkOMZ1Cf(->$GdlmD(UF?#<^1DF#cVvz3knf)gQtX$Ngo^I+@j|PdvenDGH@iuP1Ixz zeRkoQ(hJmUWLW?z$g+4vcsBhZ7o_1a(F$ZPsHf(kCA%=$yJ#01IFQE*pAN)3ToEAe zp|C#_t8}i&bv2o@%;C^wSRCO2xQx^vy%Vf+SLI+Lwy)eW%iW=IP-UfGF7MA8s-Y7k zVw&$ZhTMNr89>fS8_H>EhP(P7*z=URmF)3*#lhrCe8bJ?Su$)!i(sAitpKpRyeXla^S>TNi(5#osLMvSX z37JiAkoKwMS>qOwcGO#yGX2UNTMEN-s7wL(Jb`N}M@%O*kgR}kE5u|AaoY>XX>xpn z_9Mh~MXhdlYJC>|ZOfxg^CRlsT8oM_YJ1AN=2wydS6rI3$Sq&nxG5gaF46QOCe$lU zEK$Nnj)4jFnYIMs>is}dx{xB7kI#yrNN^xDqe3RBY9wIJUG7Tg!si~9mHU;O?w9dq zMhx}uo6vv+)nbiinUDS|q0bwKD9rdE*!i$c~ed*&F^Yl2h*mBy4`Z;7$ ze3=VM5ZCkpEK35br0+oM#Appb(s!sE8T|dy#Dno01>~IxZ9C-9EyQHl?ih8oO$Yoa zLBp*jr3wRGKXy@iz@sagZr1Sm=U!lh?Le zv3l}{!8c(raMRbB`!#ng3pLsiqB}hGl7~Ru+T&gu&X# zt|rh(OJyb6qf^ozQ)9-`)tFtMWq3XOtFCO>KX`iE3?o^(<~=Lc8?$_W{U;HnYi2NI z(!vh8i6Dn-Ek`}ezkgCR`Yg;6C5BHO8(Wt8WM*4g3zuzX`1E=2?~B&=p|M6SsoTMo^Pe_aUu@oC_SH+p=0CD3+0P}p zUk6~z5fh(5M$?tWkB0oCRLpNwB?K^Ud?uoxnvdG*!x%z~;qq1bl&#mb^j5_Ip5t)h zN%*}{s~jp*hd#_t@+9G4^bl_cTgLChpPlZJCqeUi7OtJu z0FR=^tLhm_o9~fA|3nhHued`KH7cHMGd4@DUXF&rNs{!;G#zgnwB3ue2ZpTVtUqCM zt1FbX=trJp9=avgr-a@K|MfoTZ+~wevRajW{oA1<|C=|elt=ZS7uiLr{5fzxZmmg2 z0Upnx9m9MkWH&QBHD*R!N>iRWGsNGjUOtQ?;}-<+4C&(aWop<&yZK$Shtg^v-+f{j zcNv@f^~Eev_hZ(tvNOmeO%DYb|6$-%Veno>z|YtQ*oZD0EOVz5Bs1SFYIWo}y1PMn z(Q+&iQwM12K0tmr}TWH_neJY z9~+`pP?eZ%(iy*_pWc2~#e=mg-t=%^S^s4y%M>6r|B=Fb%?qfgoTFu_XoOV#si7r1 zSaF4#2uzE}-*X$2ryQMWmGa%#rt-t($Tx zfgT^X+1r-Zt!Xk4uNT*}l*-tUNvWeri;J9)ByQNyqr@f+D`D1l-T~qtRWd_)_pt(( zjn|-#g30ET7j~xU+SmLOiUgxn9{b9jK5p6;ksu}m$?CO3OiL5!V>uPD%y^yfLen;E z@1&@>Lxc9}>K?ow;UEhg$}+L0wbYYC_}YRh-WjkuFsFVQtR*e5^u{l0MUZbc!ZruQ zfkz@W7*(j8+uc%>BO?vr&h7U?Yc<061M`Er5VYJ~$xBb9fk6LY^eh3r?V!Igd7sMxHdo9hDj8hGp zJ|{x5e%VlBE{zfG&)wLsf1neh3qjPp0MCUr)b(A&p^L0PKQ6*|bKR&S2ato>vSSHe zf9L+LIPw6SauUUm zPUxl65vNz82?MG8ZJ6NdRzi&F2ghrJ;u6+?(y$jvTFb85svoFCYO`>)**mNZ#vniV zuw`T>nA;Juc3(16RKO5oquX*h=-6ln{@I?tx*8WDbe8txu15-3c_s#o?MhyDT&p>J z*?*GxZ5m4tNz*0ud#*L3wF2HZXm`f<-$eAeSvS=fHu>t}ccc|;6-J%=|3(ZOG~5+Q zA`HYk%$%QLsx>YdDmGffNw*rxI3R5GUD(f$D`yzGUapOAG#a3p+Jn$2m+z}68x{OE-?-G;j#lL%h5b`*`-PxbjBq3~z# zO%C=GhW^GB9QZl-l^`466%@Y{O<-79W;NcD;%Lc^*ejOd4uy-`@0`oEquqk=YUtxfW)1SeC7sG+C74NB%JcKou<=5DaXJGymM z7Z{-xr#!_$OKq6-4;RYa@U2U5{R^X5D2zm9^{fELCdf*WpF{m};vC@<>n(<60q0jQb^3rs)&FRrZ zf_NvJigXi1Sy$s)dh? zIX_q2JcoJ!anoOq3G_+luI>VLl2z*Hgp5`Mr5Mzlbp6S8<8HN({Y84=l67U-t&^g* zdXR<>*7_vI7CUSx>TZtoO)N94RrMH`6X3B&kedmcj%q&+J=(KE|8vGr&+t2_K&D1u zydq^g{0i4unxLO-A-9Y};5T|tb-5wL&mxju+(!GR*d2p{fv*-^nYig@G9cpzSx!BQ zjy>z?EP$j%is+G&!YiOTUYqn!&{&(K!?OPU4O_DmW4qmKUSnyMG;QUlj!RNg%8QG7KWx6 zMy?NhhPhL%^QU$r&~fvk^Ldt3PF>JzRLzl%gh-~%c~oPl-T^13Qc)^DpP`DFzcrw) z8fKtUu1t!@t_QU2Fbx;jalK6KK``Z7 z5|(^Kudb5z)SY-y?8tW@krKAsQ_@xaO^WQV$DCTtD|oS<+57WqbdDBllghnA!+6uYNlOMbj{c>nTw8kkR$^35gYwJ#r0duf?d_8(uFb1mWPa%FGr z9Cgi^eya5^=iAvFYTDYEN4GI#m1w67sb`G@YxnWEV&Kll_07E9#fs0hG)(R4G<|;7 zFG>Z7Qq*O3+6TXwqfD0GN|Z1C*xF3WBd&Mcvpo7GVbTcW{;qeOCa_;O zWX8fNCit*F`q?fYF-1#jvqcYS6ixT*O$Jzpa86bCth$rzFZBs=-!2ZDQ=erR}t#oslBvS%`Xh@EzU<$T5|H|+SO5fKOxaLUYd>f z$o-~i97DCr4}S1X1K!;48q)M-Jh*|G8a=!6tf^kek(>OaldPwe)ZLUuUhL<2DMZ|_ zT3MXfx}Y3tdMGbnwc}Tjwei46)OKhANrqD0%KuualbMj*d?RzU;gbH~@n<+6EV$=d8$yWtD`AjLwprSco&IZ}BI8lBt3c=c?f?;Hk zp6Vrn)X+|^C>T=1h&P)2#yoLrw2P2kwTq}MQ#B+}r#MYx;3yPKj2F!_#28|rdWxN+ zRO$+i^_Vw60_a(-F%xdt>^PO?aPT^4b$QoH+hTrUMi!fxntuItl5W%a2Xcs$BOH!* z&VkL|RvJ{+jJnl{d?yI1+M=iVPaS&FBB@si+AG1M*Q!|eLbgLC$k6sM#L_!4?d>wK zh_(F0)HPO2=>)$MmR@c7sFCw=IvATSsh;2^RrvF0d8rDr0}}y4c)%|7HcYvhcQ5MAIw5`HO5Jsjacvi)bv$y57DNhF+@WTJZ(V zi~M!nEu@VPnN)QJqxG|$X!Wuf$bV14!(9dw^U*kuZ9hczZ!i>uMD^^iR$@^->EfsM zb1QQ{Wl0dd-azeK14uJVE{D_9*dXqw+`1Yasg9^q4ygE`-8CHUeMaM&{o4c=QkdctuD>c?3Y>Zx9I^gOmDM zo{r*pmEOD4;tU1%1&xc*ALoO9UoCTR?dM+SDp))dTMztA3!di$MiK_jT0Q;F;TpvI z7+ZDha;VylHgN!&+$+8~sV;bNd@KfM;u(-*>H9rfu`HXEUV{fA#STO%1hVB&yak8rQu=mF0mQHndf0+GeuS z$F}5iwCgqOI0LtlevQwT=Wl%A0*!HQm^;cf*%_q2>t0$CH^lonkyzrD7VbWZf)}(| z&9o&E9vor=AdCMVLC=2G9`TwHNYN{v$yVoNJg^^_ZE6D}@_D=vjgQst(>{M0j}mF> zGP|{Jx2(Q)Gw-y=UqBR+d}$9Ucc>LO+o_~0x-(INLoj_$f5D8xX#rNguXh79$MpfRqrg8YVo(AVi*?{ddD?dLX zDq+a+kmz|sIwJoZPuYF;k5r<_zWvy|FKVTI%^UU0@=;~eJM=BdnxX6ab~irP?+RN$ zLDFsW@`b~f-H~ET`5(qV!~oPm*(vTq@q=$fFA_O_J68ga$MJ>b$Ic?pBUnQ~rS7mj z<6NGEtbKp*o{%vb=YEfNmi9~ziFyiWqE1<%JObv%hAYkh4ZfB>N^Z5wE$|7XmC|kI z{uuM0@!M1{n&P(`5@vBIBXe0tf(>U+6L>C0t&X>QJYRdqw_skcpu0 znZV(uYwripV|8eoXR>ABzN>vG(Jw=YcIkzid!x-H5tv7rb2VbnIua3t0E)1sB+Gg6FKdOA>S`3`1c=s3!nC=u7 z8m(A@sC`kD4-6<=K4~+H8r*q`Liy{(4StMT$gwSw}({P zHSabx3(tCRm-(7S7xP)W%*ouex~Jy@PQY9zlus`@^qiEgy!YxX?Ih=Xdkx&cG0$=m zXboWvk>;U%3h>laOoFK1fsk_z*b-Z6l~t~xAi8a5Ph#p@Vb5Q_ga#-A06@ttBnluumKsoBZFRBfJKy-Ft*1)p5<#4(!^q&U zetp|r>U8rL>xn>LO;&Y>EA$}*Uto-b?;Il`H=ik*hVOspT5Wu^_&d5fPc$Cbw`R_N zNJ+X;*#~m8yAh2uxmBWIsZ<8FQ z>mk|Sv2@$ii-32M0o@^GO#up03Mp0a3E{`b>LfO{DMArL$V#6Rg2pbkB! zmyPxTMBGx>#w?4l19l6G^hg0oRJW6WcL8Ez#D9rGhKG>G6L$e$q{T%43mB>WFF=(A zKtnGB01p1nkP&4bz=oM&j0$)T0FVgyA3#s^e*g{vcK@ZYVga}+0DzD&v;TJDCMNK2 z4bNqGQrl;0dZ1C0-uh(@{9q^~iHWH$3?0*EMufu7iG>G;9l9P|CxsAg{9}?iX{K^b z!zCfEVFzV*ts>^5f(6TTH(e6#r3HyLxte?Tm`(I-O1y*%DQm=)$hx5INvSjLDM&Vu zfZRppsGovlBy+%oyyh+2qu@?_#3Vh4>KSA%OnY=_XIue^>b0RXV%JQ7tf&bZlNe(hhJ*X92Zda?=-o)OhLsUk$qWME%cLUp}` zVSd`a9d`bYfa+|hezduRu(1wwvf`K zTxXroSBRA@_j$DOP_bingQsz*w$c1%UhZtGNB&6Op!pEx9&>-bn(}@>WIUd}vp?4G zuWaA$#zoSb<7UmB#;Wv`fe&KhneKxwD7)=^G$%uqruLYcumTq=)f0%u0EwI)p-Jn+ zpeH17CV1I4y$QS>kmx=ku>JiKmom^Z%DwdgI}| z%epXO;(o_+@X~XOr(YQDF*|S;=vEfg_f0fkZJWjSv zVN!@T5*any?hak0iiljy-W^42=1Rw-k|nJj7l$EXqC94dxKTXM0k|hgWSz^VFI!|v z0RZXW>>!m!bsuZhR4tl6#<>9iyH{AoO>%zDyv@T6xToCA3lp03$mO2|M8FpUAU2mL zwZOB~t=@RCul%gDHeXVe7fCeKfcmO_kd4WoAy4JVTef{atuis*CLU@~xk|pPTB~E0 z)m%HV%Bs7`nHFyyL@knz_GOO!MAExv+3y}-I!6gEFlgpx$!VIYPZgwpj|9P{es2z) z_`E?H58oU*VtVesEypdrZ-L*L`A1-8bt{fCIgVadxmh*c`kYrRxq+mO4_><@8rENg zTi0(cFZP8W6nkYWs8>W8R=v79c|m8ZBYPENwnbYI;$e70wJ7un8|hWTxG3y**;44y z_VMa5fCOU5*I4|g*x*|y`z5g-eFS)YCwAk$75Eps3dvyhwc3OirKm#QZLm7eYec0r zgB(AY9jg62TkwJOr8HH2W=8OutcowZVaIi~e=Llfm%jCnPalkF1{-QM{#=pwy)@@dv(h--*j>u zTJ(5*yO>l@PN-$_XlR6(k_md$HCU2UNF(s1v#>-?a0WwDmKK?5qU_@!_@dGDl0;{d+XYo=z}WFlDoY9)A2;a`J! zxDT$@?KJ2sGL$dB$Epc0J;~yM$&FXnSeG+^zk=7{bFcU2qN3Sdk6f+{Nj^cDuW1_w z!49hgY3o$RWa6u#uz9*aNy)gtNbT#lwtvb6GT-b>rGdSg?QfK?fZo*}jz?y0wqYbpaB$lzZbo$zq%&0bx-TI1d zZDTrUQj~xlN$yEOd6&v@^(driof>M5o}hMf>In6l&m1iz(9;Rm^G)7Hrp@8`Ctk2i zBWL3l-fr1i^+Gn+gY$R%pVk_Z;%%h3{a#dSh4fo$z~CY`>8gs;6If9>_zg2^0^klzi5p^|OCzmbbJgMHEjBfN_a^{| zw6zK&a~U(-r-}D?4GJ%oCuTRD1S>N|L%am3zwaCXb@7+?))&9j@{4Wl8Az{j(srtO zL)N%V7j_QM!bU-?g4g$R6X^-Oo&UtEsn=xNaadm^4oWp(pu->S6ML05I}4@0hN0i; z;8AC3Jm;fvN2)Jhd_3o_E1E?3L$HPdC&1KGl((DI6+WV|P>d0rp&F!96t6}NKW_Oh zAF7LYJfo{Ypj=a_VI?uwFiMy)u{Cttz&K2qgSHSq<9$o!^HHx_(K?K8_*IKQ6ujei zG%jj==Zjn9zvMSD0sUAiPxboF#Lhj4Y8s;6Q&BWZr`;;j`I??36+BoOf`0S0#SV!$GOgO>CE+cnz%Da`%4dVDH7H_wc_ U>2emU4j%Bxz(gOd`~1!S0gh-baR2}S literal 0 HcmV?d00001 diff --git a/Algorithm/DSP/拉格朗日插值.md b/Algorithm/DSP/拉格朗日插值.md index c2f1738..69be51a 100644 --- a/Algorithm/DSP/拉格朗日插值.md +++ b/Algorithm/DSP/拉格朗日插值.md @@ -1,3 +1,179 @@ # 拉格朗日插值 - +Fit N+1 points with an $N^{th}$ degree polynomial + +![Fit N+1 points](img/拉格朗日插值/001.png) + +f(x) = exact function of which only N+1 discrete values are known and used to estab- +lish an interpolating or approximating function g(x). + +g(x) = approximating or interpolating function. This function will pass through all +specified N+1 interpolation points (also referred to as **data points** or **nodes**). + +The interpolation points or nodes are given as: + +$$\begin{gather*} + x_0 & f(x_0)\equiv f_0 \\ + x_1 & f(x_1)\equiv f_1 \\ + x_2 & f(x_2)\equiv f_2 \\ + ... \\ + x_N & f(x_N)\equiv f_N +\end{gather*}$$ + +There exists only one $N^{th}$ degree polynomial that passes through a given set of N+1 points. It’s form is (expressed as a power series): + +$$g(x)=a_0+a_1x+a_2x^2+a_3x^3+...+a_Nx^N$$ + +where $a_i=\text{unknown coefficients}$, $i=0,N\text{(N+1 coefficients)}$. + +No matter how we derive the $N^{th}$ degree polynomial: + +* Fitting power series +* Lagrange interpolating functions +* Newton forward or backward interpolation + +The resulting polynomial will always be the same! + +## Power Series Fitting to Define Lagrange Interpolation + +g(x) must match f(x) at the selected data points: + +$$\begin{gather*} + g(x_0)=f_0 \to a_0+a_1x_0+a_2x_0^2+...+a_Nx_0^N=f_0 \\ + g(x_1)=f_1 \to a_0+a_1x_1+a_2x_1^2+...+a_Nx_1^N=f_1 \\ + ... \\ + g(x_N)=f_N \to a_0+a_1x_N+a_2x_N^2+...+a_Nx_N^N=f_N \\ +\end{gather*}$$ + +Solve set of simultaneous equations: + +$$\begin{bmatrix} + 1 & x_0 & x_0^2 & ... & x_0^N \\ + 1 & x_1 & x_1^2 & ... & x_1^N \\ + ... \\ + 1 & x_N & x_N^2 & ... & x_N^N +\end{bmatrix} \begin{bmatrix} + a_0 \\ a_1 \\ ... \\ a_N +\end{bmatrix} = \begin{bmatrix} + f_0 \\ f_1 \\ ... \\ f_N +\end{bmatrix}$$ + +It is relatively computationally costly to solve the coefficients of the interpolating function g(x) (i.e. you need to program a solution to these equations). + +## Lagrange Interpolation Using Basis Functions + +We note that in general: + +$$g(x_i)=f_i$$ + +Let + +$$g(x)=\sum_{i=0}^Nf_iV_i(x)$$ + +where $V_i(x)$ polynomial of degree associated with each node such that + +$$\begin{equation*} + V_i(x_j)\equiv \begin{cases} + 0 & i\neq j \\ + 1 & i= j + \end{cases} +\end{equation*}$$ + +For example if we have 5 interpolation points (or nodes) + +$$g(x_3)=f_0V_0(x_3)+f_1V_1(x_3)+f_2V_2(x_3)+f_3V_3(x_3)+f_4V_4(x_3)$$ + +Using the definition for $V_i(x_j)$: + +$$\begin{gather*} + V_0(x_3)=0 \\ + V_1(x_3)=0 \\ + V_2(x_3)=0 \\ + V_3(x_3)=1 \\ + V_4(x_4)=0 +\end{gather*}$$ + +we have: + +$$g(x_3)=f_3$$ + +How do we construct $V_i(x)$? + +* Degree N +* Roots at $x_0,x_1,x_2,...,x_{i-1},...,x_N$ (at all nodes except $x_i$) +* $V_i(x_i)=1$ + +Let $W_i(x)=(x-x_0)(x-x_1)(x-x_2)...(x-x_{i+1})...(x-x_N)$ + +* The function $W_i$ is such that we do have the required roots, i.e. it equals zeros at nodes $x_0,x_1,x_2,...,x_N$ except at node $x_i$ +* Degree of $W_i(x)$ is N +* However $W_i(x)$ in the form presented will not equal to unity at $x_i$ + +We normalize $W_i(x)$ and define the Lagrange basis functions $V_i(x)$: + +$$V_i(x)=\frac{(x-x_0)(x-x_1)(x-x_2)...(x-x_{i-1})(x-x_{i+1})...(x-x_N)}{(x_i-x_0)(x_i-x_1)(x_i-x_2)...(x_i-x_{i-1})(x_i-x_{i+1})...(x_i-x_N)}$$ + +Now we have $V_i(x)$ such that $V_i(x_i)$ equals: + +$$\begin{gather*} +V_i(x)=\frac{(x_i-x_0)(x_i-x_1)(x_i-x_2)...(x_i-x_{i-1})(1)(x_i-x_{i+1})...(x_i-x_N)}{(x_i-x_0)(x_i-x_1)(x_i-x_2)...(x_i-x_{i-1})(x_i-x_{i+1})...(x_i-x_N)} \\ +\\ +\to V_i(x_i)=1 +\end{gather*}$$ + +We alos satisfy $V_i(x_j)=0$ for $i\neq j$ + +e.g. + +$$V_1(x_2)=\frac{(x_2-x_0)(1)(x_2-x_2)(x_2-x_3)...(x_2-x_N)}{(x_1-x_0)(1)(x_1-x_2)(x_1-x_3)...(x_1-x_N)}=0$$ + +The general form of the interpolating function g(x) with the specified form of $V_i(x)$ is: + +$$g(x)=\sum_{i=0}^{N}f_iV_i(x)$$ + +* The sum of polynomials of degree N is also polynomial of degree N +* g(x) is equivalent to fitting the power series and computing coefficients $a_0,...,a_N$ + +## Lagrange Linear Interpolation Using Basis Functions + +Linear Lagrange (N=1) is the simplest form of Lagrange Interpolation: + +$$\begin{gather*} + g(x)=\sum_{i=0}^{1}f_iV_i(x) \\ + \to g(x)=f_0V_0(x)+f_1V_1(x) +\end{gather*}$$ + +where + +$$V_0(x)=\frac{(x-x_1)}{(x_0-x_1)}=\frac{(x_1-x)}{(x_1-x_0)}$$ + +and + +$$V_1(x)=\frac{(x-x_0)}{(x_1-x_0)}$$ + +## Example + +Given the following data: + +$$\begin{gather*} + x_0=2 & f_0=1.5 \\ + x_1=5 & f_1=4.0 +\end{gather*}$$ + +Find the linear interpolating function g(x) + +Lagrange basis functions are: + +$$\begin{gather*} + V_0(x)=\frac{x-5}{-3} \\ + \\ + V_1(x)=\frac{x-2}{3} +\end{gather*}$$ + +Interpolating function g(x) is: + +$$g(x)=1.5V_0(x)+4.0V_1(x)$$ + +## 外部参考连接 + +1. [原文](https://coast.nd.edu/jjwteach/www/www/30125/pdfnotes/lecture3_6v13.pdf) diff --git a/Software/Applications/KiCAD/KiCAD_简要说明.md b/Software/Applications/KiCAD/KiCAD_简要说明.md index bd01a31..03f0824 100644 --- a/Software/Applications/KiCAD/KiCAD_简要说明.md +++ b/Software/Applications/KiCAD/KiCAD_简要说明.md @@ -1,5 +1,7 @@ # KiCAD 简要说明 +TODO: + 1. 2. 3. diff --git a/Software/Development/Language/LaTex/LaTex_数学公式.md b/Software/Development/Language/LaTex/LaTex_数学公式.md index 842c0be..ea008a7 100644 --- a/Software/Development/Language/LaTex/LaTex_数学公式.md +++ b/Software/Development/Language/LaTex/LaTex_数学公式.md @@ -8,6 +8,9 @@ - [5. 带标字母](#5-带标字母) - [6. 常用数集](#6-常用数集) - [7. 组合](#7-组合) + - [7.1. 基本组合](#71-基本组合) + - [7.2. 矩阵](#72-矩阵) + - [8. 排版](#8-排版) ## 1. 行内公式与行间公式 @@ -141,6 +144,8 @@ $$a+b$$ ## 7. 组合 +### 7.1. 基本组合 + 等式: $$\begin{equation} @@ -190,3 +195,36 @@ $$\begin{split} F_s(s)=\int_{0}^{\infty}[\sum_{n=0}^{\infty}f(nT)\delta(t-nT)]e^{-st}dt \\ =\sum_{n=0}^{\infty}f(nT)e^{-snT} \\ \end{split}$$ + +### 7.2. 矩阵 + +$$\begin{matrix} + 0 & 1 \\ 1 & 0 \\ +\end{matrix}$$ + +$$\begin{pmatrix} + 0 & 1 \\ 1 & 0 \\ +\end{pmatrix}$$ + +$$\begin{bmatrix} + 0 & 1 \\ 1 & 0 \\ +\end{bmatrix}$$ + +$$\begin{Bmatrix} + 0 & 1 \\ 1 & 0 \\ +\end{Bmatrix}$$ + +$$\begin{vmatrix} + 0 & 1 \\ 1 & 0 \\ +\end{vmatrix}$$ + +$$\begin{Vmatrix} + 0 & 1 \\ 1 & 0 \\ +\end{Vmatrix}$$ + +## 8. 排版 + +| LaTex | Description | +|-------|-------------| +| \\ | 换行 | +| & | 间隔,相当于 Tab |