DemoPublic/Algorithm/DSP/Polyfit.c

165 lines
4.1 KiB
C
Raw Normal View History

/**
* @brief y=a[0]+a[1]*x^1+a[2]*x^2+...+a[n-1]*x^(n-1)
*
* @param xn
* @param yn
* @param n
* @param order 5
* @param an
* @return int 0 -1
*/
int Polyfit(const double* const xn,
const double* const yn,
const unsigned int n,
const unsigned int order,
double* const an)
{
// Declarations...
// ----------------------------------
enum {maxOrder = 5};
double B[maxOrder+1] = {0.0};
double P[((maxOrder+1) * 2)+1] = {0.0};
double A[(maxOrder + 1)*2*(maxOrder + 1)] = {0.0};
double x, y, powx;
unsigned int ii, jj, kk;
// Verify initial conditions....
// ----------------------------------
// This method requires that the n >
// (order+1)
if (n <= order)
return -1;
// This method has imposed an arbitrary bound of
// order <= maxOrder. Increase maxOrder if necessary.
if (order > maxOrder)
return -1;
// Begin Code...
// ----------------------------------
// Identify the column vector
for (ii = 0; ii < n; ii++)
{
x = xn[ii];
y = yn[ii];
powx = 1;
for (jj = 0; jj < (order + 1); jj++)
{
B[jj] = B[jj] + (y * powx);
powx = powx * x;
}
}
// Initialize the PowX array
P[0] = n;
// Compute the sum of the Powers of X
for (ii = 0; ii < n; ii++)
{
x = xn[ii];
powx = xn[ii];
for (jj = 1; jj < ((2 * (order + 1)) + 1); jj++)
{
P[jj] = P[jj] + powx;
powx = powx * x;
}
}
// Initialize the reduction matrix
//
for (ii = 0; ii < (order + 1); ii++)
{
for (jj = 0; jj < (order + 1); jj++)
{
A[(ii * (2 * (order + 1))) + jj] = P[ii+jj];
}
A[(ii*(2 * (order + 1))) + (ii + (order + 1))] = 1;
}
// Move the Identity matrix portion of the redux matrix
// to the left side (find the inverse of the left side
// of the redux matrix
for (ii = 0; ii < (order + 1); ii++)
{
x = A[(ii * (2 * (order + 1))) + ii];
if (x != 0.0)
{
for (kk = 0; kk < (2 * (order + 1)); kk++)
{
A[(ii * (2 * (order + 1))) + kk] =
A[(ii * (2 * (order + 1))) + kk] / x;
}
for (jj = 0; jj < (order + 1); jj++)
{
if ((jj - ii) != 0)
{
y = A[(jj * (2 * (order + 1))) + ii];
for (kk = 0; kk < (2 * (order + 1)); kk++)
{
A[(jj * (2 * (order + 1))) + kk] =
A[(jj * (2 * (order + 1))) + kk] -
y * A[(ii * (2 * (order + 1))) + kk];
}
}
}
}
else
{
// Cannot work with singular matrices
return -1;
}
}
// Calculate and Identify the an
for (ii = 0; ii < (order + 1); ii++)
{
for (jj = 0; jj < (order + 1); jj++)
{
x = 0;
for (kk = 0; kk < (order + 1); kk++)
{
x = x + (A[(ii * (2 * (order + 1))) + (kk + (order + 1))] *
B[kk]);
}
an[ii] = x;
}
}
return 0;
}
/** Demo */
static double Xn[] = {0, 0.3000, 0.6000, 0.9000, 1.2000, 1.5000, 1.8000, 2.1000, 2.4000, 2.7000, 3.0000};
static double Yn[] = {2.0000, 2.3780, 3.9440, 7.3460, 13.2320, 22.2500, 35.0480, 52.2740, 74.5760, 102.6020, 137.0000};
/**
* @brief
*
* @return int
*/
int main(void)
{
double out = 0.0;
unsigned int i;
double coff[3];
polyfit(Xn, Yn, 11, 2, coff);
for (i=0; i<3; i++)
{
out += coff[i]*pow(Xn[4], i);
}
return 0;
}