68 lines
2.2 KiB
Python
68 lines
2.2 KiB
Python
# OpenFace API tests.
|
|
#
|
|
# Copyright 2015-2016 Carnegie Mellon University
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import cv2
|
|
import os
|
|
|
|
import numpy as np
|
|
np.set_printoptions(precision=2)
|
|
|
|
import scipy
|
|
import scipy.spatial
|
|
|
|
import openface
|
|
|
|
openfaceDir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
|
modelDir = os.path.join(openfaceDir, 'models')
|
|
dlibModelDir = os.path.join(modelDir, 'dlib')
|
|
openfaceModelDir = os.path.join(modelDir, 'openface')
|
|
|
|
exampleImages = os.path.join(openfaceDir, 'images', 'examples')
|
|
lfwSubset = os.path.join(openfaceDir, 'data', 'lfw-subset')
|
|
|
|
dlibFacePredictor = os.path.join(dlibModelDir,
|
|
"shape_predictor_68_face_landmarks.dat")
|
|
model = os.path.join(openfaceModelDir, 'nn4.small2.v1.t7')
|
|
imgDim = 96
|
|
|
|
align = openface.AlignDlib(dlibFacePredictor)
|
|
net = openface.TorchNeuralNet(model, imgDim=imgDim)
|
|
|
|
|
|
def test_pipeline():
|
|
imgPath = os.path.join(exampleImages, 'lennon-1.jpg')
|
|
bgrImg = cv2.imread(imgPath)
|
|
if bgrImg is None:
|
|
raise Exception("Unable to load image: {}".format(imgPath))
|
|
rgbImg = cv2.cvtColor(bgrImg, cv2.COLOR_BGR2RGB)
|
|
# assert np.isclose(norm(rgbImg), 11.1355)
|
|
|
|
bb = align.getLargestFaceBoundingBox(rgbImg)
|
|
assert bb.left() == 341
|
|
assert bb.right() == 1006
|
|
assert bb.top() == 193
|
|
assert bb.bottom() == 859
|
|
|
|
alignedFace = align.align(imgDim, rgbImg, bb,
|
|
landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)
|
|
# assert np.isclose(norm(alignedFace), 7.61577)
|
|
|
|
rep = net.forward(alignedFace)
|
|
cosDist = scipy.spatial.distance.cosine(rep, np.ones(128))
|
|
print(cosDist)
|
|
assert np.isclose(cosDist, 0.938840385931)
|