openface/demos/classifier.py

202 lines
7.0 KiB
Python
Executable File

#!/usr/bin/env python2
#
# Example to classify faces.
# Brandon Amos
# 2015/10/11
#
# Copyright 2015 Carnegie Mellon University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
start = time.time()
import argparse
import cv2
import itertools
import os
import pickle
from operator import itemgetter
import numpy as np
np.set_printoptions(precision=2)
import pandas as pd
import sys
fileDir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.join(fileDir, ".."))
import openface
import openface.helper
from openface.data import iterImgs
from sklearn.preprocessing import LabelEncoder
from sklearn.decomposition import PCA
from sklearn.grid_search import GridSearchCV
from sklearn.manifold import TSNE
from sklearn.svm import SVC
modelDir = os.path.join(fileDir, '..', 'models')
dlibModelDir = os.path.join(modelDir, 'dlib')
openfaceModelDir = os.path.join(modelDir, 'openface')
def getRep(imgPath):
start = time.time()
bgrImg = cv2.imread(imgPath)
if bgrImg is None:
raise Exception("Unable to load image: {}".format(imgPath))
rgbImg = cv2.cvtColor(bgrImg, cv2.COLOR_BGR2RGB)
if args.verbose:
print(" + Original size: {}".format(rgbImg.shape))
if args.verbose:
print("Loading the image took {} seconds.".format(time.time() - start))
start = time.time()
bb = align.getLargestFaceBoundingBox(rgbImg)
if bb is None:
raise Exception("Unable to find a face: {}".format(imgPath))
if args.verbose:
print("Face detection took {} seconds.".format(time.time() - start))
start = time.time()
alignedFace = align.alignImg("affine", args.imgDim, bgrImg, bb)
if alignedFace is None:
raise Exception("Unable to align image: {}".format(imgPath))
if args.verbose:
print("Alignment took {} seconds.".format(time.time() - start))
start = time.time()
rep = net.forwardImage(alignedFace)
if args.verbose:
print("Neural network forward pass took {} seconds.".format(time.time() - start))
return rep
def train(args):
print("Loading embeddings.")
fname = "{}/labels.csv".format(args.workDir)
labels = pd.read_csv(fname, header=None).as_matrix()[:, 1]
labels = map(itemgetter(1),
map(os.path.split,
map(os.path.dirname, labels))) # Get the directory.
fname = "{}/reps.csv".format(args.workDir)
embeddings = pd.read_csv(fname, header=None).as_matrix()
le = LabelEncoder().fit(labels)
labelsNum = le.transform(labels)
param_grid = [
{'C': [1, 10, 100, 1000],
'kernel': ['linear']},
{'C': [1, 10, 100, 1000],
'gamma': [0.001, 0.0001],
'kernel': ['rbf']}
]
svm = GridSearchCV(
SVC(probability=True),
param_grid, verbose=4, cv=5, n_jobs=16
).fit(embeddings, labelsNum)
print("Best estimator: {}".format(svm.best_estimator_))
print("Best score on left out data: {:.2f}".format(svm.best_score_))
with open("{}/classifier.pkl".format(args.workDir), 'w') as f:
pickle.dump((le, svm), f)
def infer(args):
with open(args.classifierModel, 'r') as f:
(le, svm) = pickle.load(f)
rep = getRep(args.img)
start = time.time()
predictions = svm.predict_proba(rep)[0]
maxI = np.argmax(predictions)
person = le.inverse_transform(maxI)
confidence = predictions[maxI]
if args.verbose:
print("SVM prediction took {} seconds.".format(time.time() - start))
print("Predict {} with {:.2f} confidence.".format(person, confidence))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dlibFacePredictor', type=str,
help="Path to dlib's face predictor.",
default=os.path.join(dlibModelDir,
"shape_predictor_68_face_landmarks.dat"))
parser.add_argument('--dlibRoot', type=str,
default=os.path.expanduser(
"~/src/dlib-18.16/python_examples"),
help="dlib directory with the dlib.so Python library.")
parser.add_argument('--networkModel', type=str,
help="Path to Torch network model.",
default=os.path.join(openfaceModelDir, 'nn4.v1.t7'))
parser.add_argument('--imgDim', type=int,
help="Default image dimension.", default=96)
parser.add_argument('--cuda', action='store_true')
parser.add_argument('--verbose', action='store_true')
subparsers = parser.add_subparsers(dest='mode', help="Mode")
trainParser = subparsers.add_parser('train',
help="Train a new classifier.")
trainParser.add_argument('workDir', type=str,
help="The input work directory containing 'reps.csv' and 'labels.csv'. Obtained from aligning a directory with 'align-dlib' and getting the representations with 'batch-represent'.")
inferParser = subparsers.add_parser('infer',
help='Predict who an image contains from a trained classifier.')
inferParser.add_argument('classifierModel', type=str,
help='The Python pickle representing the classifier. This is NOT the Torch network model, which can be set with --networkModel.')
inferParser.add_argument('img', type=str,
help="Input image.")
args = parser.parse_args()
if args.verbose:
print("Argument parsing and import libraries took {} seconds.".format(time.time() - start))
if args.mode == 'infer' and args.classifierModel.endswith(".t7"):
raise Exception("""
Torch network model passed as the classification model,
which should be a Python pickle (.pkl)
See the documentation for the distinction between the Torch
network and classification models:
http://cmusatyalab.github.io/openface/demo-3-classifier/
http://cmusatyalab.github.io/openface/training-new-models/
Use `--networkModel` to set a non-standard Torch network model.""")
start = time.time()
sys.path = [args.dlibRoot] + sys.path
import dlib
from openface.alignment import NaiveDlib # Depends on dlib.
align = NaiveDlib(args.dlibFacePredictor)
net = openface.TorchWrap(
args.networkModel, imgDim=args.imgDim, cuda=args.cuda)
if args.verbose:
print("Loading the dlib and OpenFace models took {} seconds.".format(time.time() - start))
start = time.time()
if args.mode == 'train':
train(args)
elif args.mode == 'infer':
infer(args)