268 lines
9.4 KiB
Lua
268 lines
9.4 KiB
Lua
-- Copyright 2015 Carnegie Mellon University
|
|
--
|
|
-- Licensed under the Apache License, Version 2.0 (the "License");
|
|
-- you may not use this file except in compliance with the License.
|
|
-- You may obtain a copy of the License at
|
|
--
|
|
-- http://www.apache.org/licenses/LICENSE-2.0
|
|
--
|
|
-- Unless required by applicable law or agreed to in writing, software
|
|
-- distributed under the License is distributed on an "AS IS" BASIS,
|
|
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
-- See the License for the specific language governing permissions and
|
|
-- limitations under the License.
|
|
|
|
-- 2015-08-09: [Brandon Amos] Initial implementation.
|
|
-- 2016-01-04: [Bartosz Ludwiczuk] Substantial improvements at
|
|
-- https://github.com/melgor/Triplet-Learning
|
|
|
|
require 'optim'
|
|
require 'fbnn'
|
|
require 'image'
|
|
require 'torchx' --for concetration the table of tensors
|
|
|
|
paths.dofile("OpenFaceOptim.lua")
|
|
|
|
|
|
local optimMethod = optim.adadelta
|
|
local optimState = {} -- Use for other algorithms like SGD
|
|
local optimator = OpenFaceOptim(model, optimState)
|
|
|
|
trainLogger = optim.Logger(paths.concat(opt.save, 'train.log'))
|
|
|
|
local batchNumber
|
|
local triplet_loss
|
|
|
|
|
|
local function sanitize(net)
|
|
net:apply(function (val)
|
|
for name,field in pairs(val) do
|
|
if torch.type(field) == 'cdata' then val[name] = nil end
|
|
if name == 'homeGradBuffers' then val[name] = nil end
|
|
if name == 'input_gpu' then val['input_gpu'] = {} end
|
|
if name == 'gradOutput_gpu' then val['gradOutput_gpu'] = {} end
|
|
if name == 'gradInput_gpu' then val['gradInput_gpu'] = {} end
|
|
if (name == 'output' or name == 'gradInput')
|
|
and torch.type(field) == 'torch.CudaTensor' then
|
|
cutorch.withDevice(field:getDevice(), function() val[name] = field.new() end)
|
|
end
|
|
end
|
|
end)
|
|
end
|
|
|
|
-- From https://groups.google.com/d/msg/torch7/i8sJYlgQPeA/wiHlPSa5-HYJ
|
|
local function replaceModules(net, orig_class_name, replacer)
|
|
local nodes, container_nodes = net:findModules(orig_class_name)
|
|
for i = 1, #nodes do
|
|
for j = 1, #(container_nodes[i].modules) do
|
|
if container_nodes[i].modules[j] == nodes[i] then
|
|
local orig_mod = container_nodes[i].modules[j]
|
|
container_nodes[i].modules[j] = replacer(orig_mod)
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
local function cudnn_to_nn(net)
|
|
local net_nn = net:clone():float()
|
|
|
|
replaceModules(net_nn, 'cudnn.SpatialConvolution',
|
|
function(cudnn_mod)
|
|
local nn_mod = nn.SpatialConvolutionMM(
|
|
cudnn_mod.nInputPlane, cudnn_mod.nOutputPlane,
|
|
cudnn_mod.kW, cudnn_mod.kH,
|
|
cudnn_mod.dW, cudnn_mod.dH,
|
|
cudnn_mod.padW, cudnn_mod.padH
|
|
)
|
|
nn_mod.weight:copy(cudnn_mod.weight)
|
|
nn_mod.bias:copy(cudnn_mod.bias)
|
|
return nn_mod
|
|
end
|
|
)
|
|
replaceModules(net_nn, 'cudnn.SpatialAveragePooling',
|
|
function(cudnn_mod)
|
|
return nn.SpatialAveragePooling(
|
|
cudnn_mod.kW, cudnn_mod.kH,
|
|
cudnn_mod.dW, cudnn_mod.dH,
|
|
cudnn_mod.padW, cudnn_mod.padH
|
|
)
|
|
end
|
|
)
|
|
replaceModules(net_nn, 'cudnn.SpatialMaxPooling',
|
|
function(cudnn_mod)
|
|
return nn.SpatialMaxPooling(
|
|
cudnn_mod.kW, cudnn_mod.kH,
|
|
cudnn_mod.dW, cudnn_mod.dH,
|
|
cudnn_mod.padW, cudnn_mod.padH
|
|
)
|
|
end
|
|
)
|
|
|
|
replaceModules(net_nn, 'cudnn.ReLU', function() return nn.ReLU() end)
|
|
replaceModules(net_nn, 'cudnn.SpatialCrossMapLRN',
|
|
function(cudnn_mod)
|
|
return nn.SpatialCrossMapLRN(cudnn_mod.size, cudnn_mod.alpha,
|
|
cudnn_mod.beta, cudnn_mod.K)
|
|
end
|
|
)
|
|
|
|
return net_nn
|
|
end
|
|
|
|
function train()
|
|
print('==> doing epoch on training data:')
|
|
print("==> online epoch # " .. epoch)
|
|
|
|
batchNumber = 0
|
|
cutorch.synchronize()
|
|
|
|
-- set the dropouts to training mode
|
|
model:training()
|
|
model:cuda() -- get it back on the right GPUs.
|
|
|
|
local tm = torch.Timer()
|
|
triplet_loss = 0
|
|
|
|
local i = 1
|
|
while batchNumber < opt.epochSize do
|
|
-- queue jobs to data-workers
|
|
donkeys:addjob(
|
|
-- the job callback (runs in data-worker thread)
|
|
function()
|
|
local inputs, numPerClass = trainLoader:samplePeople(opt.peoplePerBatch,
|
|
opt.imagesPerPerson)
|
|
inputs = inputs:float()
|
|
numPerClass = numPerClass:float()
|
|
return sendTensor(inputs), sendTensor(numPerClass)
|
|
end,
|
|
-- the end callback (runs in the main thread)
|
|
trainBatch
|
|
)
|
|
if i % 5 == 0 then
|
|
donkeys:synchronize()
|
|
end
|
|
i = i + 1
|
|
end
|
|
|
|
donkeys:synchronize()
|
|
cutorch.synchronize()
|
|
|
|
triplet_loss = triplet_loss / batchNumber
|
|
|
|
trainLogger:add{
|
|
['avg triplet loss (train set)'] = triplet_loss,
|
|
}
|
|
print(string.format('Epoch: [%d][TRAINING SUMMARY] Total Time(s): %.2f\t'
|
|
.. 'average triplet loss (per batch): %.2f',
|
|
epoch, tm:time().real, triplet_loss))
|
|
print('\n')
|
|
|
|
collectgarbage()
|
|
|
|
|
|
sanitize(model)
|
|
local nnModel = cudnn_to_nn(model):float()
|
|
torch.save(paths.concat(opt.save, 'model_' .. epoch .. '.t7'), nnModel)
|
|
torch.save(paths.concat(opt.save, 'optimState_' .. epoch .. '.t7'), optimState)
|
|
collectgarbage()
|
|
end -- of train()
|
|
|
|
local inputsCPU = torch.FloatTensor()
|
|
local numPerClass = torch.FloatTensor()
|
|
|
|
local timer = torch.Timer()
|
|
function trainBatch(inputsThread, numPerClassThread)
|
|
if batchNumber >= opt.epochSize then
|
|
return
|
|
end
|
|
|
|
cutorch.synchronize()
|
|
timer:reset()
|
|
receiveTensor(inputsThread, inputsCPU)
|
|
receiveTensor(numPerClassThread, numPerClass)
|
|
|
|
local numImages = inputsCPU:size(1)
|
|
local embeddings = model:forward(inputsCPU:cuda()):float()
|
|
|
|
local as_table = {}
|
|
local ps_table = {}
|
|
local ns_table = {}
|
|
|
|
local triplet_idx = {}
|
|
local num_example_per_idx = torch.Tensor(embeddings:size(1))
|
|
num_example_per_idx:zero()
|
|
|
|
local tripIdx = 1
|
|
local embStartIdx = 1
|
|
local numTrips = 0
|
|
for i = 1,opt.peoplePerBatch do
|
|
local n = numPerClass[i]
|
|
for j = 1,n-1 do --for every image in batch
|
|
local aIdx = embStartIdx + j - 1
|
|
local diff = embeddings - embeddings[{ {aIdx} }]:expandAs(embeddings)
|
|
local norms = diff:norm(2, 2):pow(2):squeeze() --L2 norm have be squared
|
|
for pair = j,n-1 do --create all posible positive pairs
|
|
local pIdx = embStartIdx + pair
|
|
-- Select a semi-hard negative that has a distance
|
|
-- further away from the positive exemplar. Oxford-Face Idea
|
|
|
|
--choose random example which is in margin
|
|
local fff = (embeddings[aIdx]-embeddings[pIdx]):norm(2)
|
|
local normsP = norms - torch.Tensor(embeddings:size(1)):fill(fff*fff) --L2 norm have be squared
|
|
--clean the idx of same class by setting to them max value
|
|
normsP[{{embStartIdx,embStartIdx +n-1}}] = normsP:max()
|
|
-- get indexes of example which are inside margin
|
|
local in_margin = normsP:lt(opt.alpha)
|
|
local allNeg = torch.find(in_margin, 1)
|
|
|
|
if table.getn(allNeg) ~= 0 then --use only non-random triplets. Random triples (which are beyond margin) will just produce gradient = 0, so average gradient will decrease
|
|
selNegIdx = allNeg[math.random (table.getn(allNeg))]
|
|
--get embeding of each example
|
|
table.insert(as_table,embeddings[aIdx])
|
|
table.insert(ps_table,embeddings[pIdx])
|
|
table.insert(ns_table,embeddings[selNegIdx])
|
|
-- get original idx of triplets
|
|
table.insert(triplet_idx,{aIdx,pIdx,selNegIdx})
|
|
-- increase number of times of using each example, need for averaging then
|
|
num_example_per_idx[aIdx] = num_example_per_idx[aIdx] + 1
|
|
num_example_per_idx[pIdx] = num_example_per_idx[pIdx] + 1
|
|
num_example_per_idx[selNegIdx] = num_example_per_idx[selNegIdx] + 1
|
|
tripIdx = tripIdx + 1
|
|
end
|
|
|
|
numTrips = numTrips + 1
|
|
end
|
|
end
|
|
embStartIdx = embStartIdx + n
|
|
end
|
|
assert(embStartIdx - 1 == numImages)
|
|
print((' + (nTrips, nTripsRight) = (%d, %d)'):format(numTrips,table.getn(as_table)))
|
|
|
|
local as = torch.concat(as_table):view(table.getn(as_table), opt.embSize)
|
|
local ps = torch.concat(ps_table):view(table.getn(ps_table), opt.embSize)
|
|
local ns = torch.concat(ns_table):view(table.getn(ns_table), opt.embSize)
|
|
|
|
local asCuda = torch.CudaTensor()
|
|
local psCuda = torch.CudaTensor()
|
|
local nsCuda = torch.CudaTensor()
|
|
|
|
local sz = as:size()
|
|
local inCuda = inputsCPU:cuda()
|
|
asCuda:resize(sz):copy(as)
|
|
psCuda:resize(sz):copy(ps)
|
|
nsCuda:resize(sz):copy(ns)
|
|
local err, _ = optimator:optimizeTriplet(
|
|
optimMethod, inCuda, {asCuda, psCuda, nsCuda}, criterion,
|
|
triplet_idx -- , num_example_per_idx
|
|
)
|
|
|
|
-- DataParallelTable's syncParameters
|
|
model:apply(function(m) if m.syncParameters then m:syncParameters() end end)
|
|
cutorch.synchronize()
|
|
batchNumber = batchNumber + 1
|
|
print(('Epoch: [%d][%d/%d]\tTime %.3f\ttripErr %.2e'):format(
|
|
epoch, batchNumber, opt.epochSize, timer:time().real, err))
|
|
timer:reset()
|
|
triplet_loss = triplet_loss + err
|
|
end
|