openface/tests/openface_batch_represent_te...

78 lines
2.4 KiB
Python

# OpenFace batch-represent tests.
#
# Copyright 2015 Carnegie Mellon University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
import tempfile
import numpy as np
np.set_printoptions(precision=2)
import pandas as pd
import scipy
import scipy.spatial
from subprocess import Popen, PIPE
openfaceDir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
modelDir = os.path.join(openfaceDir, 'models')
exampleImages = os.path.join(openfaceDir, 'images', 'examples')
lfwSubset = os.path.join(openfaceDir, 'data', 'lfw-subset')
def test_batch_represent():
# Get lfw-subset by running ./data/download-lfw-subset.sh
assert os.path.isdir(lfwSubset)
workDir = tempfile.mkdtemp(prefix='OpenFaceBatchRep-')
cmd = ['python2', os.path.join(openfaceDir, 'util', 'align-dlib.py'),
os.path.join(lfwSubset, 'raw'), 'align', 'outerEyesAndNose',
os.path.join(workDir, 'aligned')]
p = Popen(cmd, stdout=PIPE, stderr=PIPE)
(out, err) = p.communicate()
assert p.returncode == 0
cmd = ['th', './batch-represent/main.lua',
'-data', os.path.join(workDir, 'aligned'),
'-outDir', os.path.join(workDir, 'reps')]
p = Popen(cmd, stdout=PIPE, stderr=PIPE)
(out, err) = p.communicate()
assert p.returncode == 0
fname = os.path.join(workDir, 'reps', 'labels.csv')
labels = pd.read_csv(fname, header=None).as_matrix()
fname = os.path.join(workDir, 'reps', 'reps.csv')
embeddings = pd.read_csv(fname, header=None).as_matrix()
brody1 = brody2 = None
for i, (cls, label) in enumerate(labels):
print(label)
if "Brody_0001" in label:
brody1 = embeddings[i]
elif "Brody_0002" in label:
brody2 = embeddings[i]
assert brody1 is not None
assert brody2 is not None
cosDist = scipy.spatial.distance.cosine(brody1, brody2)
print(cosDist)
assert np.isclose(cosDist, 0.113500484192)
shutil.rmtree(workDir)