openface/util/align-dlib.py

155 lines
5.8 KiB
Python
Executable File

#!/usr/bin/env python2
#
# Copyright 2015 Carnegie Mellon University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
fileDir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.join(fileDir, ".."))
import argparse
import cv2
import random
import shutil
from skimage import io
modelDir = os.path.join(fileDir, '..', 'models')
dlibModelDir = os.path.join(modelDir, 'dlib')
openfaceModelDir = os.path.join(modelDir, 'openface')
def write(vals, fName):
if os.path.isfile(fName):
print("{} exists. Backing up.".format(fName))
os.rename(fName, "{}.bak".format(fName))
with open(fName, 'w') as f:
for p in vals:
f.write(",".join(str(x) for x in p))
f.write("\n")
def computeMeanMain(args):
align = NaiveDlib(args.dlibFaceMean, args.dlibFacePredictor)
imgs = list(iterImgs(args.inputDir))
if args.numImages > 0:
imgs = random.sample(imgs, args.numImages)
facePoints = []
for img in imgs:
rgb = img.getRGB()
bb = align.getLargestFaceBoundingBox(rgb)
alignedPoints = align.align(rgb, bb)
if alignedPoints:
facePoints.append(alignedPoints)
facePointsNp = np.array(facePoints)
mean = np.mean(facePointsNp, axis=0)
std = np.std(facePointsNp, axis=0)
write(mean, "{}/mean.csv".format(args.modelDir))
write(std, "{}/std.csv".format(args.modelDir))
# Only import in this mode.
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.scatter(mean[:, 0], -mean[:, 1], color='k')
ax.axis('equal')
for i, p in enumerate(mean):
ax.annotate(str(i), (p[0] + 0.005, -p[1] + 0.005), fontsize=8)
plt.savefig("{}/mean.png".format(args.modelDir))
def alignMain(args):
openface.helper.mkdirP(args.outputDir)
imgs = list(iterImgs(args.inputDir))
# Shuffle so multiple versions can be run at once.
random.shuffle(imgs)
align = NaiveDlib(args.dlibFaceMean, args.dlibFacePredictor)
nFallbacks = 0
for imgObject in imgs:
outDir = os.path.join(args.outputDir, imgObject.cls)
imgName = "{}/{}.png".format(outDir, imgObject.name)
openface.helper.mkdirP(outDir)
if not os.path.isfile(imgName):
rgb = imgObject.getRGB(cache=False)
out = align.alignImg(args.method, args.size, rgb)
if args.fallbackLfw and out is None:
nFallbacks += 1
deepFunneled = "{}/{}.jpg".format(os.path.join(args.fallbackLfw,
imgObject.cls),
imgObject.name)
shutil.copy(deepFunneled, "{}/{}.jpg".format(os.path.join(args.outputDir,
imgObject.cls),
imgObject.name))
if out is not None:
io.imsave(imgName, out)
print('nFallbacks:', nFallbacks)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('inputDir', type=str, help="Input image directory.")
parser.add_argument('--dlibFaceMean', type=str, help="Path to dlib's face predictor.",
default=os.path.join(dlibModelDir, "mean.csv"))
parser.add_argument('--dlibFacePredictor', type=str, help="Path to dlib's face predictor.",
default=os.path.join(dlibModelDir, "shape_predictor_68_face_landmarks.dat"))
parser.add_argument('--dlibRoot', type=str,
default=os.path.expanduser(
"~/src/dlib-18.16/python_examples"),
help="dlib directory with the dlib.so Python library.")
subparsers = parser.add_subparsers(dest='mode', help="Mode")
computeMeanParser = subparsers.add_parser(
'computeMean', help='Compute the image mean of a directory of images.')
computeMeanParser.add_argument('--numImages', type=int, help="The number of images. '0' for all images.",
default=0) # <= 0 ===> all imgs
alignmentParser = subparsers.add_parser(
'align', help='Align a directory of images.')
alignmentParser.add_argument('method', type=str,
choices=['tightcrop', 'affine',
'perspective', 'homography'],
help="Alignment method.")
alignmentParser.add_argument(
'outputDir', type=str, help="Output directory of aligned images.")
alignmentParser.add_argument('--outputDebugImages', action='store_true',
help='Output annotated images for debugging and presenting.')
alignmentParser.add_argument('--size', type=int, help="Default image size.",
default=152)
alignmentParser.add_argument('--fallbackLfw', type=str,
help="If alignment doesn't work, fallback to copying the deep funneled version from this directory..")
args = parser.parse_args()
sys.path.append(args.dlibRoot)
import openface
import openface.helper
from openface.data import iterImgs
from openface.alignment import NaiveDlib
if args.mode == 'computeMean':
computeMeanMain(args)
else:
alignMain(args)