61 lines
2.0 KiB
Python
Executable File
61 lines
2.0 KiB
Python
Executable File
#!/usr/bin/env python2
|
|
#
|
|
# Copyright 2015 Carnegie Mellon University
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import sys
|
|
sys.path.append(".")
|
|
sys.path.append("/home/bamos/src/dlib-18.15/python_examples")
|
|
|
|
import argparse
|
|
import numpy as np
|
|
import os
|
|
import random
|
|
|
|
import cv2
|
|
|
|
from skimage import io
|
|
|
|
import openface
|
|
from openface.alignment import NaiveDlib
|
|
from openface.data import iterImgs
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('imgDir', type=str, help="Input image directory.")
|
|
parser.add_argument('--numImages', type=int, default=1000)
|
|
parser.add_argument('--model', type=str, help="TODO",
|
|
default="./models/openface/nn4.v1.t7")
|
|
parser.add_argument('--outputFile', type=str,
|
|
help="Output file, stored in numpy serialized format.",
|
|
default="./unknown.npy")
|
|
parser.add_argument('--imgDim', type=int, help="Default image size.",
|
|
default=96)
|
|
args = parser.parse_args()
|
|
|
|
align = NaiveDlib("models/dlib/",
|
|
"shape_predictor_68_face_landmarks.dat")
|
|
openface = openface.TorchWrap(args.model, imgDim=args.imgDim, cuda=False)
|
|
|
|
allImgs = list(iterImgs(args.imgDir))
|
|
imgObjs = random.sample(allImgs, args.numImages)
|
|
|
|
reps = []
|
|
for imgObj in imgObjs:
|
|
rep = openface.forward(imgObj.path)
|
|
rep = np.array(rep)
|
|
reps.append(rep)
|
|
|
|
np.save(args.outputFile, np.row_stack(reps))
|