openface/training/train.lua

225 lines
6.8 KiB
Lua

-- Copyright 2015-2016 Carnegie Mellon University
--
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
--
-- http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.
-- 2015-08-09: [Brandon Amos] Initial implementation.
-- 2016-01-04: [Bartosz Ludwiczuk] Substantial improvements at
-- https://github.com/melgor/Triplet-Learning
require 'optim'
require 'image'
require 'torchx' --for concetration the table of tensors
paths.dofile("OpenFaceOptim.lua")
local optimMethod = optim.adam
local optimState = {} -- Use for other algorithms like SGD
local optimator = OpenFaceOptim(model, optimState)
trainLogger = optim.Logger(paths.concat(opt.save, 'train.log'))
local batchNumber
local triplet_loss
function train()
print('==> doing epoch on training data:')
print("==> online epoch # " .. epoch)
batchNumber = 0
if opt.cuda then
cutorch.synchronize()
end
model:training()
if opt.cuda then
model:cuda()
if opt.cudnn then
cudnn.convert(model,cudnn)
end
end
local tm = torch.Timer()
triplet_loss = 0
local i = 1
while batchNumber < opt.epochSize do
-- queue jobs to data-workers
donkeys:addjob(
-- the job callback (runs in data-worker thread)
function()
local inputs, numPerClass = trainLoader:samplePeople(opt.peoplePerBatch,
opt.imagesPerPerson)
inputs = inputs:float()
numPerClass = numPerClass:float()
return sendTensor(inputs), sendTensor(numPerClass)
end,
-- the end callback (runs in the main thread)
trainBatch
)
if i % 5 == 0 then
donkeys:synchronize()
end
i = i + 1
end
donkeys:synchronize()
if opt.cuda then
cutorch.synchronize()
end
triplet_loss = triplet_loss / batchNumber
trainLogger:add{
['avg triplet loss (train set)'] = triplet_loss,
}
print(string.format('Epoch: [%d][TRAINING SUMMARY] Total Time(s): %.2f\t'
.. 'average triplet loss (per batch): %.2f',
epoch, tm:time().real, triplet_loss))
print('\n')
collectgarbage()
local nnModel = model:float():clone():clearState()
if opt.cudnn then
cudnn.convert(nnModel,nn)
end
torch.save(paths.concat(opt.save, 'model_' .. epoch .. '.t7'), nnModel)
torch.save(paths.concat(opt.save, 'optimState_' .. epoch .. '.t7'), optimState)
collectgarbage()
end -- of train()
local inputsCPU = torch.FloatTensor()
local numPerClass = torch.FloatTensor()
local timer = torch.Timer()
function trainBatch(inputsThread, numPerClassThread)
if batchNumber >= opt.epochSize then
return
end
if opt.cuda then
cutorch.synchronize()
end
timer:reset()
receiveTensor(inputsThread, inputsCPU)
receiveTensor(numPerClassThread, numPerClass)
local inputs
if opt.cuda then
inputs = inputsCPU:cuda()
else
inputs = inputsCPU
end
local numImages = inputs:size(1)
local embeddings = model:forward(inputs):float()
local as_table = {}
local ps_table = {}
local ns_table = {}
local triplet_idx = {}
local num_example_per_idx = torch.Tensor(embeddings:size(1))
num_example_per_idx:zero()
local tripIdx = 1
local embStartIdx = 1
local numTrips = 0
for i = 1,opt.peoplePerBatch do
local n = numPerClass[i]
for j = 1,n-1 do -- For every image in the batch.
local aIdx = embStartIdx + j - 1
local diff = embeddings - embeddings[{ {aIdx} }]:expandAs(embeddings)
local norms = diff:norm(2, 2):pow(2):squeeze()
for pair = j, n-1 do -- For every possible positive pair.
local pIdx = embStartIdx + pair
local fff = (embeddings[aIdx]-embeddings[pIdx]):norm(2)
local normsP = norms - torch.Tensor(embeddings:size(1)):fill(fff*fff)
-- Set the indices of the same class to the max so they are ignored.
normsP[{{embStartIdx,embStartIdx +n-1}}] = normsP:max()
-- Get indices of images within the margin.
local in_margin = normsP:lt(opt.alpha)
local allNeg = torch.find(in_margin, 1)
-- Use only non-random triplets.
-- Random triples (which are beyond the margin) will just produce gradient = 0,
-- so the average gradient will decrease.
if table.getn(allNeg) ~= 0 then
selNegIdx = allNeg[math.random (table.getn(allNeg))]
-- Add the embeding of each example.
table.insert(as_table,embeddings[aIdx])
table.insert(ps_table,embeddings[pIdx])
table.insert(ns_table,embeddings[selNegIdx])
-- Add the original index of triplets.
table.insert(triplet_idx, {aIdx,pIdx,selNegIdx})
-- Increase the number of times of using each example.
num_example_per_idx[aIdx] = num_example_per_idx[aIdx] + 1
num_example_per_idx[pIdx] = num_example_per_idx[pIdx] + 1
num_example_per_idx[selNegIdx] = num_example_per_idx[selNegIdx] + 1
tripIdx = tripIdx + 1
end
numTrips = numTrips + 1
end
end
embStartIdx = embStartIdx + n
end
assert(embStartIdx - 1 == numImages)
local nTripsFound = table.getn(as_table)
print((' + (nTrips, nTripsFound) = (%d, %d)'):format(numTrips, nTripsFound))
if nTripsFound == 0 then
print("Warning: nTripsFound == 0. Skipping batch.")
return
end
local as = torch.concat(as_table):view(table.getn(as_table), opt.embSize)
local ps = torch.concat(ps_table):view(table.getn(ps_table), opt.embSize)
local ns = torch.concat(ns_table):view(table.getn(ns_table), opt.embSize)
local apn
if opt.cuda then
local asCuda = torch.CudaTensor()
local psCuda = torch.CudaTensor()
local nsCuda = torch.CudaTensor()
local sz = as:size()
asCuda:resize(sz):copy(as)
psCuda:resize(sz):copy(ps)
nsCuda:resize(sz):copy(ns)
apn = {asCuda, psCuda, nsCuda}
else
apn = {as, ps, ns}
end
local err, _ = optimator:optimizeTriplet(
optimMethod, inputs, apn, criterion,
triplet_idx -- , num_example_per_idx
)
-- DataParallelTable's syncParameters
model:apply(function(m) if m.syncParameters then m:syncParameters() end end)
if opt.cuda then
cutorch.synchronize()
end
batchNumber = batchNumber + 1
print(('Epoch: [%d][%d/%d]\tTime %.3f\ttripErr %.2e'):format(
epoch, batchNumber, opt.epochSize, timer:time().real, err))
timer:reset()
triplet_loss = triplet_loss + err
end