openface/demos/classifier_webcam.py

215 lines
6.9 KiB
Python
Executable File

#!/usr/bin/env python2
#
# Example to run classifier on webcam stream.
# Brandon Amos & Vijayenthiran
# 2016/06/21
#
# Copyright 2015-2016 Carnegie Mellon University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Contrib: Vijayenthiran
# This example file shows to run a classifier on webcam stream. You need to
# run the classifier.py to generate classifier with your own dataset.
# To run this file from the openface home dir:
# ./demo/classifier_webcam.py <path-to-your-classifier>
import time
start = time.time()
import argparse
import cv2
import os
import pickle
import sys
import numpy as np
np.set_printoptions(precision=2)
from sklearn.mixture import GMM
import openface
fileDir = os.path.dirname(os.path.realpath(__file__))
modelDir = os.path.join(fileDir, '..', 'models')
dlibModelDir = os.path.join(modelDir, 'dlib')
openfaceModelDir = os.path.join(modelDir, 'openface')
def getRep(bgrImg):
start = time.time()
if bgrImg is None:
raise Exception("Unable to load image/frame")
rgbImg = cv2.cvtColor(bgrImg, cv2.COLOR_BGR2RGB)
if args.verbose:
print(" + Original size: {}".format(rgbImg.shape))
if args.verbose:
print("Loading the image took {} seconds.".format(time.time() - start))
start = time.time()
# Get the largest face bounding box
# bb = align.getLargestFaceBoundingBox(rgbImg) #Bounding box
# Get all bounding boxes
bb = align.getAllFaceBoundingBoxes(rgbImg)
if bb is None:
# raise Exception("Unable to find a face: {}".format(imgPath))
return None
if args.verbose:
print("Face detection took {} seconds.".format(time.time() - start))
start = time.time()
alignedFaces = []
for box in bb:
alignedFaces.append(
align.align(
args.imgDim,
rgbImg,
box,
landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE))
if alignedFaces is None:
raise Exception("Unable to align the frame")
if args.verbose:
print("Alignment took {} seconds.".format(time.time() - start))
start = time.time()
reps = []
for alignedFace in alignedFaces:
reps.append(net.forward(alignedFace))
if args.verbose:
print("Neural network forward pass took {} seconds.".format(
time.time() - start))
# print (reps)
return reps
def infer(img, args):
with open(args.classifierModel, 'r') as f:
if sys.version_info[0] < 3:
(le, clf) = pickle.load(f) # le - label and clf - classifer
else:
(le, clf) = pickle.load(f, encoding='latin1') # le - label and clf - classifer
reps = getRep(img)
persons = []
confidences = []
for rep in reps:
try:
rep = rep.reshape(1, -1)
except:
print ("No Face detected")
return (None, None)
start = time.time()
predictions = clf.predict_proba(rep).ravel()
# print (predictions)
maxI = np.argmax(predictions)
# max2 = np.argsort(predictions)[-3:][::-1][1]
persons.append(le.inverse_transform(maxI))
# print (str(le.inverse_transform(max2)) + ": "+str( predictions [max2]))
# ^ prints the second prediction
confidences.append(predictions[maxI])
if args.verbose:
print("Prediction took {} seconds.".format(time.time() - start))
pass
# print("Predict {} with {:.2f} confidence.".format(person.decode('utf-8'), confidence))
if isinstance(clf, GMM):
dist = np.linalg.norm(rep - clf.means_[maxI])
print(" + Distance from the mean: {}".format(dist))
pass
return (persons, confidences)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--dlibFacePredictor',
type=str,
help="Path to dlib's face predictor.",
default=os.path.join(
dlibModelDir,
"shape_predictor_68_face_landmarks.dat"))
parser.add_argument(
'--networkModel',
type=str,
help="Path to Torch network model.",
default=os.path.join(
openfaceModelDir,
'nn4.small2.v1.t7'))
parser.add_argument('--imgDim', type=int,
help="Default image dimension.", default=96)
parser.add_argument(
'--captureDevice',
type=int,
default=0,
help='Capture device. 0 for latop webcam and 1 for usb webcam')
parser.add_argument('--width', type=int, default=320)
parser.add_argument('--height', type=int, default=240)
parser.add_argument('--threshold', type=float, default=0.5)
parser.add_argument('--cuda', action='store_true')
parser.add_argument('--verbose', action='store_true')
parser.add_argument(
'classifierModel',
type=str,
help='The Python pickle representing the classifier. This is NOT the Torch network model, which can be set with --networkModel.')
args = parser.parse_args()
align = openface.AlignDlib(args.dlibFacePredictor)
net = openface.TorchNeuralNet(
args.networkModel,
imgDim=args.imgDim,
cuda=args.cuda)
# Capture device. Usually 0 will be webcam and 1 will be usb cam.
video_capture = cv2.VideoCapture(args.captureDevice)
video_capture.set(3, args.width)
video_capture.set(4, args.height)
confidenceList = []
while True:
ret, frame = video_capture.read()
persons, confidences = infer(frame, args)
print ("P: " + str(persons) + " C: " + str(confidences))
try:
# append with two floating point precision
confidenceList.append('%.2f' % confidences[0])
except:
# If there is no face detected, confidences matrix will be empty.
# We can simply ignore it.
pass
for i, c in enumerate(confidences):
if c <= args.threshold: # 0.5 is kept as threshold for known face.
persons[i] = "_unknown"
# Print the person name and conf value on the frame
cv2.putText(frame, "P: {} C: {}".format(persons, confidences),
(50, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
cv2.imshow('', frame)
# quit the program on the press of key 'q'
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything is done, release the capture
video_capture.release()
cv2.destroyAllWindows()