openface/evaluation/lfw.py

274 lines
9.2 KiB
Python
Executable File

#!/usr/bin/env python3
#
# Copyright 2015 Carnegie Mellon University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
import pandas as pd
from scipy.interpolate import interp1d
from sklearn import cross_validation
from sklearn.cross_validation import KFold
from sklearn.metrics import accuracy_score
from sklearn.metrics.pairwise import chi2_kernel
from sklearn.svm import SVC
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
plt.style.use('bmh')
import os
import sys
import argparse
from scipy import arange
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--workDir', type=str, default='reps')
parser.add_argument('--lfwPairs', type=str,
default=os.path.expanduser("~/openface/data/lfw/pairs.txt"))
args = parser.parse_args()
print("Loading embeddings.")
fname = "{}/labels.csv".format(args.workDir)
paths = pd.read_csv(fname, header=None).as_matrix()[:, 1]
paths = map(os.path.basename, paths) # Get the filename.
# Remove the extension.
paths = map(lambda path: os.path.splitext(path)[0], paths)
fname = "{}/reps.csv".format(args.workDir)
rawEmbeddings = pd.read_csv(fname, header=None).as_matrix()
embeddings = dict(zip(*[paths, rawEmbeddings]))
pairs = loadPairs(args.lfwPairs)
classifyExp(args.workDir, pairs, embeddings)
plotClassifyExp(args.workDir)
def loadPairs(pairsFname):
print(" + Reading pairs.")
pairs = []
with open(pairsFname, 'r') as f:
for line in f.readlines()[1:]:
pair = line.strip().split()
pairs.append(pair)
assert(len(pairs) == 6000)
return np.array(pairs)
def getEmbeddings(pair, embeddings):
if len(pair) == 3:
name1 = "{}_{}".format(pair[0], pair[1].zfill(4))
name2 = "{}_{}".format(pair[0], pair[2].zfill(4))
actual_same = True
elif len(pair) == 4:
name1 = "{}_{}".format(pair[0], pair[1].zfill(4))
name2 = "{}_{}".format(pair[2], pair[3].zfill(4))
actual_same = False
else:
raise Exception(
"Unexpected pair length: {}".format(len(pair)))
(x1, x2) = (embeddings[name1], embeddings[name2])
return (x1, x2, actual_same)
def writeROC(fname, thresholds, embeddings, pairsTest):
with open(fname, "w") as f:
f.write("threshold,tp,tn,fp,fn,tpr,fpr\n")
tp = tn = fp = fn = 0
for threshold in thresholds:
tp = tn = fp = fn = 0
for pair in pairsTest:
(x1, x2, actual_same) = getEmbeddings(pair, embeddings)
diff = x1 - x2
dist = np.dot(diff.T, diff)
predict_same = dist < threshold
if predict_same and actual_same:
tp += 1
elif predict_same and not actual_same:
fp += 1
elif not predict_same and not actual_same:
tn += 1
elif not predict_same and actual_same:
fn += 1
if tp + fn == 0:
tpr = 0
else:
tpr = float(tp) / float(tp + fn)
if fp + tn == 0:
fpr = 0
else:
fpr = float(fp) / float(fp + tn)
f.write(",".join([str(x)
for x in [threshold, tp, tn, fp, fn, tpr, fpr]]))
f.write("\n")
if tpr == 1.0 and fpr == 1.0:
# No further improvements.
f.write(",".join([str(x)
for x in [4.0, tp, tn, fp, fn, tpr, fpr]]))
return
def evalThresholdAccuracy(embeddings, pairs, threshold):
y_true = []
y_predict = []
for pair in pairs:
(x1, x2, actual_same) = getEmbeddings(pair, embeddings)
diff = x1 - x2
dist = np.dot(diff.T, diff)
predict_same = dist < threshold
y_predict.append(predict_same)
y_true.append(actual_same)
y_true = np.array(y_true)
y_predict = np.array(y_predict)
accuracy = accuracy_score(y_true, y_predict)
return accuracy
def findBestThreshold(thresholds, embeddings, pairsTrain):
bestThresh = bestThreshAcc = 0
for threshold in thresholds:
accuracy = evalThresholdAccuracy(embeddings, pairsTrain, threshold)
if accuracy >= bestThreshAcc:
bestThreshAcc = accuracy
bestThresh = threshold
else:
# No further improvements.
return bestThresh
return bestThresh
def classifyExp(workDir, pairs, embeddings):
print(" + Computing accuracy.")
folds = KFold(n=6000, n_folds=10, shuffle=False)
thresholds = arange(0, 4, 0.01)
if os.path.exists("{}/accuracies.txt".format(workDir)):
print("{}/accuracies.txt already exists. Skipping processing.".format(workDir))
else:
accuracies = []
with open("{}/accuracies.txt".format(workDir), "w") as f:
f.write('fold, threshold, accuracy\n')
for idx, (train, test) in enumerate(folds):
fname = "{}/l2-roc.fold-{}.csv".format(workDir, idx)
writeROC(fname, thresholds, embeddings, pairs[test])
bestThresh = findBestThreshold(
thresholds, embeddings, pairs[train])
accuracy = evalThresholdAccuracy(
embeddings, pairs[test], bestThresh)
accuracies.append(accuracy)
f.write('{}, {:0.2f}, {:0.2f}\n'.format(
idx, bestThresh, accuracy))
f.write('\navg, {:0.4f} +/- {:0.4f}\n'.format(np.mean(accuracies),
np.std(accuracies)))
def getAUC(fprs, tprs):
sortedFprs, sortedTprs = zip(*sorted(zip(*(fprs, tprs))))
sortedFprs = list(sortedFprs)
sortedTprs = list(sortedTprs)
if sortedFprs[-1] != 1.0:
sortedFprs.append(1.0)
sortedTprs.append(sortedTprs[-1])
return np.trapz(sortedTprs, sortedFprs)
def plotClassifyExp(workDir):
print("Plotting.")
fig, ax = plt.subplots(1, 1)
fs = []
for i in range(10):
rocData = pd.read_csv("{}/l2-roc.fold-{}.csv".format(workDir, i))
fs.append(interp1d(rocData['fpr'], rocData['tpr']))
x = np.linspace(0, 1, 1000)
fnFoldPlot, = plt.plot(x, fs[-1](x), color='grey', alpha=0.5)
openbrData = pd.read_csv("comparisons/openbr.v1.1.0.DET.csv")
openbrData['Y'] = 1 - openbrData['Y']
# brPlot = openbrData.plot(x='X', y='Y', legend=True, ax=ax)
brPlot, = plt.plot(openbrData['X'], openbrData['Y'])
brAUC = getAUC(openbrData['X'], openbrData['Y'])
fprs = []
tprs = []
for fpr in np.linspace(0, 1, 1000):
tpr = 0.0
for f in fs:
v = f(fpr)
if math.isnan(v):
v = 0.0
tpr += v
tpr /= 10.0
fprs.append(fpr)
tprs.append(tpr)
fnMeanPlot, = plt.plot(fprs, tprs)
fnAUC = getAUC(fprs, tprs)
humanData = pd.read_table(
"comparisons/kumar_human_crop.txt", header=None, sep=' ')
humanPlot, = plt.plot(humanData[1], humanData[0])
humanAUC = getAUC(humanData[1], humanData[0])
deepfaceData = pd.read_table(
"comparisons/deepface_ensemble.txt", header=None, sep=' ')
dfPlot, = plt.plot(deepfaceData[1], deepfaceData[0], '--',
alpha=0.75)
deepfaceAUC = getAUC(deepfaceData[1], deepfaceData[0])
baiduData = pd.read_table(
"comparisons/BaiduIDLFinal.TPFP", header=None, sep=' ')
bPlot, = plt.plot(baiduData[1], baiduData[0])
baiduAUC = getAUC(baiduData[1], baiduData[0])
eigData = pd.read_table(
"comparisons/eigenfaces-original-roc.txt", header=None, sep=' ')
eigPlot, = plt.plot(eigData[1], eigData[0])
eigAUC = getAUC(eigData[1], eigData[0])
ax.legend([humanPlot, bPlot, dfPlot, brPlot, eigPlot, fnMeanPlot, fnFoldPlot],
['Human, Cropped [AUC={:.3f}]'.format(humanAUC),
'Baidu [{:.3f}]'.format(baiduAUC),
'DeepFace Ensemble [{:.3f}]'.format(deepfaceAUC),
'OpenBR v1.1.0 [{:.3f}]'.format(brAUC),
'Eigenfaces (img-restrict) [{:.3f}]'.format(eigAUC),
'OpenFace nn4.v1 [{:.3f}]'.format(fnAUC),
'OpenFace nn4.v1 folds'],
loc='lower right')
plt.plot([0, 1], color='k', linestyle=':')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
# plt.ylim(ymin=0,ymax=1)
plt.xlim(xmin=0, xmax=1)
plt.grid(b=True, which='major', color='k', linestyle='-')
plt.grid(b=True, which='minor', color='k', linestyle='-', alpha=0.2)
plt.minorticks_on()
fig.savefig(os.path.join(workDir, "roc.pdf"))
if __name__ == '__main__':
main()