79 lines
3.0 KiB
Python
Executable File
79 lines
3.0 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
#
|
|
# Copyright 2015 Carnegie Mellon University
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import os
|
|
import random
|
|
import shutil
|
|
|
|
def getImgs(imageDir):
|
|
exts = ["jpg", "png"]
|
|
|
|
# All images with one image from each class put into the validation set.
|
|
allImgsM = []
|
|
classes = {} # Directory Names -> 0-based indexes for Caffe classes.
|
|
valImgs = []
|
|
for subdir, dirs, files in os.walk(imageDir):
|
|
for fName in files:
|
|
(imageClass, imageName) = (os.path.basename(subdir), fName)
|
|
if any(imageName.lower().endswith("." + ext) for ext in exts):
|
|
if imageClass not in classes:
|
|
caffeClass = len(classes) # 0-based indexes.
|
|
classes[imageClass] = caffeClass
|
|
valImgs.append((imageClass, imageName))
|
|
else:
|
|
allImgsM.append((imageClass, imageName))
|
|
return (allImgsM, classes, valImgs)
|
|
|
|
def createTrainValSplit(imageDir, valRatio):
|
|
print("+ Val ratio: '{}'.".format(valRatio))
|
|
|
|
(allImgsM, classes, valImgs) = getImgs(imageDir)
|
|
|
|
print("+ Number of Classes: '{}'.".format(len(classes)))
|
|
|
|
trainValIdx = int((len(allImgsM)+len(valImgs))*valRatio) - len(valImgs)
|
|
assert(trainValIdx > 0) # Otherwise, valRatio is too small.
|
|
|
|
random.shuffle(allImgsM)
|
|
valImgs += allImgsM[0:trainValIdx]
|
|
trainImgs = allImgsM[trainValIdx:]
|
|
|
|
print("+ Training set size: '{}'.".format(len(trainImgs)))
|
|
print("+ Validation set size: '{}'.".format(len(valImgs)))
|
|
|
|
for person, img in trainImgs:
|
|
origPath = os.path.join(imageDir, person, img)
|
|
newDir = os.path.join(imageDir, 'train', person)
|
|
newPath = os.path.join(imageDir, 'train', person, img)
|
|
os.makedirs(newDir, exist_ok=True)
|
|
shutil.move(origPath, newPath)
|
|
|
|
for person, img in valImgs:
|
|
origPath = os.path.join(imageDir, person, img)
|
|
newDir = os.path.join(imageDir, 'val', person)
|
|
newPath = os.path.join(imageDir, 'val', person, img)
|
|
os.makedirs(newDir, exist_ok=True)
|
|
shutil.move(origPath, newPath)
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('imageDir', type=str, help="Directory of images to partition in-place to 'train' and 'val' directories.")
|
|
parser.add_argument('--valRatio', type=float, default=0.10, help="Validation to training ratio.")
|
|
args = parser.parse_args()
|
|
|
|
createTrainValSplit(args.imageDir, args.valRatio)
|