openface/util/annotate-image.py

73 lines
2.5 KiB
Python
Executable File

#!/usr/bin/env python2
#
# Copyright 2015-2016 Carnegie Mellon University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Example usage: ./util/annotate-image.py /data/path_to_your_image.jpg outerEyesAndNose
import os
import sys
fileDir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.join(fileDir, ".."))
import argparse
import cv2
from openface.align_dlib import AlignDlib
modelDir = os.path.join(fileDir, '..', 'models')
dlibModelDir = os.path.join(modelDir, 'dlib')
openfaceModelDir = os.path.join(modelDir, 'openface')
def main(args):
align = AlignDlib(args.dlibFacePredictor)
bgrImg = cv2.imread(args.img)
if bgrImg is None:
raise Exception("Unable to load image: {}".format(args.img))
rgbImg = cv2.cvtColor(bgrImg, cv2.COLOR_BGR2RGB)
bb = align.getLargestFaceBoundingBox(rgbImg)
if bb is None:
raise Exception("Unable to find a face: {}".format(args.img))
landmarks = align.findLandmarks(rgbImg, bb)
if landmarks is None:
raise Exception("Unable to find landmarks within image: {}".format(args.img))
bl = (bb.left(), bb.bottom())
tr = (bb.right(), bb.top())
cv2.rectangle(bgrImg, bl, tr, color=(153, 255, 204), thickness=3)
for landmark in landmarks:
cv2.circle(bgrImg, center=landmark, radius=3, color=(102, 204, 255), thickness=-1)
print("Saving image to 'annotated.png'")
cv2.imwrite("annotated.png", bgrImg)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('img', type=str, help="Input image.")
parser.add_argument('--dlibFacePredictor', type=str, help="Path to dlib's face predictor.",
default=os.path.join(dlibModelDir, "shape_predictor_68_face_landmarks.dat"))
parser.add_argument('landmarks', type=str,
choices=['outerEyesAndNose', 'innerEyesAndBottomLip'],
help='The landmarks to align to.')
parser.add_argument('--size', type=int, help="Default image size.",
default=96)
args = parser.parse_args()
main(args)