openface/training/OpenFaceOptim.lua

165 lines
5.6 KiB
Lua

-- 2015-08-09: Originally from https://github.com/facebook/fbnn/blob/master/fbnn/Optim.lua.
-- 2015-08-09: [Brandon Amos] Initial optimizeTriplet implementation.
-- 2016-01-04: [Bartosz Ludwiczuk] Substantial improvements to optimizeTriplet at
-- https://github.com/melgor/Triplet-Learning
local pl = require('pl.import_into')()
local OpenFaceOptim, _ = torch.class('OpenFaceOptim')
-- deepcopy routine that assumes the presence of a 'clone' method in user
-- data should be used to deeply copy. This matches the behavior of Torch
-- tensors.
local function deepcopy(x)
local typename = type(x)
if typename == "userdata" then
return x:clone()
end
if typename == "table" then
local retval = { }
for k,v in pairs(x) do
retval[deepcopy(k)] = deepcopy(v)
end
return retval
end
return x
end
-- Returns weight parameters and bias parameters and associated grad parameters
-- for this module. Annotates the return values with flag marking parameter set
-- as bias parameters set
function OpenFaceOptim.weight_bias_parameters(module)
local weight_params, bias_params
if module.weight then
weight_params = {module.weight, module.gradWeight}
weight_params.is_bias = false
end
if module.bias then
bias_params = {module.bias, module.gradBias}
bias_params.is_bias = true
end
return {weight_params, bias_params}
end
function OpenFaceOptim:__init(model, optState, checkpoint_data)
assert(model)
assert(checkpoint_data or optState)
assert(not (checkpoint_data and optState))
self.model = model
self.modulesToOptState = {}
-- Keep this around so we update it in setParameters
self.originalOptState = optState
-- Each module has some set of parameters and grad parameters. Since
-- they may be allocated discontinuously, we need separate optState for
-- each parameter tensor. self.modulesToOptState maps each module to
-- a lua table of optState clones.
if not checkpoint_data then
self.model:apply(function(module)
self.modulesToOptState[module] = { }
local params = self.weight_bias_parameters(module)
if pl.tablex.size(params) == 0 or pl.tablex.size(params) == 2 then
for i, _ in ipairs(params) do
self.modulesToOptState[module][i] = deepcopy(optState)
if params[i] and params[i].is_bias then
-- never regularize biases
self.modulesToOptState[module][i].weightDecay = 0.0
end
end
assert(module)
assert(self.modulesToOptState[module])
end
end)
else
local state = checkpoint_data.optim_state
local modules = {}
self.model:apply(function(m) table.insert(modules, m) end)
assert(pl.tablex.compare_no_order(modules, pl.tablex.keys(state)))
self.modulesToOptState = state
end
end
local function get_device_for_module(mod)
local dev_id = nil
for _, val in pairs(mod) do
if torch.typename(val) == 'torch.CudaTensor' then
local this_dev = val:getDevice()
if this_dev ~= 0 then
-- _make sure the tensors are allocated consistently
assert(dev_id == nil or dev_id == this_dev)
dev_id = this_dev
end
end
end
return dev_id -- _may still be zero if none are allocated.
end
local function on_device_for_module(mod, f)
local this_dev = get_device_for_module(mod)
if this_dev ~= nil then
return cutorch.withDevice(this_dev, f)
end
return f()
end
function OpenFaceOptim:optimizeTriplet(optimMethod, inputs, output,
criterion, mapper) --, averageUse)
assert(optimMethod)
assert(inputs)
assert(criterion)
assert(self.modulesToOptState)
self.model:zeroGradParameters()
local numImages = inputs:size(1)
local err = criterion:forward(output)
local df_do = criterion:backward(output)
--map gradient to the index of input
gradient_all = torch.Tensor(numImages,output[1]:size(2)):type(inputs:type())
gradient_all:zero()
--get all gradient for each example
for i=1,table.getn(mapper) do
gradient_all[mapper[i][1]]:add(df_do[1][i])
gradient_all[mapper[i][2]]:add(df_do[2][i])
gradient_all[mapper[i][3]]:add(df_do[3][i])
end
--get average gradient per example: Not sure if it is right idea, so now Turn Off
-- for i=1,numImages do
-- if averageUse[i] ~= 0 then gradient_all[i]:div(averageUse[i]) end
-- end
-- print (('Gradient Average: %f: '):format(torch.abs(gradient_all):sum()))
self.model:backward(inputs, gradient_all)
-- We'll set these in the loop that iterates over each module. Get them
-- out here to be captured.
local curGrad
local curParam
local function fEvalMod(_)
return err, curGrad
end
for curMod, opt in pairs(self.modulesToOptState) do
on_device_for_module(curMod, function()
local curModParams = self.weight_bias_parameters(curMod)
if pl.tablex.size(curModParams) == 0 or
pl.tablex.size(curModParams) == 2
then
if curModParams then
for i, _ in ipairs(curModParams) do
if curModParams[i] then
-- expect param, gradParam pair
curParam, curGrad = table.unpack(curModParams[i])
assert(curParam and curGrad)
optimMethod(fEvalMod, curParam, opt[i])
end
end
end
end
end)
end
return err, output
end