#!/usr/bin/env python2 # Compute the overall processing latency for an image. # Brandon Amos # 2016-01-19 # # Copyright 2015-2016 Carnegie Mellon University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time start = time.time() import argparse import cv2 import os import numpy as np np.set_printoptions(precision=2) import openface fileDir = os.path.dirname(os.path.realpath(__file__)) modelDir = os.path.join(fileDir, '..', 'models') dlibModelDir = os.path.join(modelDir, 'dlib') openfaceModelDir = os.path.join(modelDir, 'openface') parser = argparse.ArgumentParser() parser.add_argument('img', type=str, help="Input image.") parser.add_argument('--dlibFacePredictor', type=str, help="Path to dlib's face predictor.", default=os.path.join(dlibModelDir, "shape_predictor_68_face_landmarks.dat")) parser.add_argument('--networkModel', type=str, help="Path to Torch network model.", default=os.path.join(openfaceModelDir, 'nn4.small2.v1.t7')) parser.add_argument('--imgDim', type=int, help="Default image dimension.", default=96) parser.add_argument('--numIters', type=int, help="Number of iterations.", default=100) args = parser.parse_args() print("Argument parsing and loading libraries took {:0.4f} seconds.".format( time.time() - start)) start = time.time() align = openface.AlignDlib(args.dlibFacePredictor) net = openface.TorchNeuralNet(args.networkModel, args.imgDim) print("Loading the dlib and OpenFace models took {:0.4f} seconds.".format( time.time() - start)) def getTimes(rgbImg): start = time.time() bb = align.getLargestFaceBoundingBox(rgbImg) if bb is None: raise Exception("Unable to find a face.") detectionTime = time.time() - start start = time.time() alignedFace = align.align(args.imgDim, rgbImg, bb, landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE) alignmentTime = time.time() - start start = time.time() net.forward(alignedFace) repTime = time.time() - start return (detectionTime, alignmentTime, repTime) bgrImg = cv2.imread(args.img) if bgrImg is None: raise Exception("Unable to load image: {:0.4f}".format(args.img)) rgbImg = cv2.cvtColor(bgrImg, cv2.COLOR_BGR2RGB) print("Image size: {}".format(rgbImg.shape)) detectionTimes = [] alignmentTimes = [] repTimes = [] totalTimes = [] for i in range(args.numIters): (dTime, aTime, repTime) = getTimes(rgbImg) detectionTimes.append(dTime) alignmentTimes.append(aTime) repTimes.append(repTime) totalTimes.append(dTime + aTime + repTime) print('Number of iterations: {}'.format(args.numIters)) avg = np.mean(detectionTimes) std = np.std(detectionTimes) print('Average Detection Time (seconds): {:0.4f} +/- {:0.4f}'.format(avg, std)) avg = np.mean(alignmentTimes) std = np.std(alignmentTimes) print('Average Alignment Time (seconds): {:0.4f} +/- {:0.4f}'.format(avg, std)) avg = np.mean(repTimes) std = np.std(repTimes) print('Average Neural Net Representation Time (seconds): {:0.4f} +/- {:0.4f}'.format(avg, std)) avg = np.mean(totalTimes) std = np.std(totalTimes) print('Average Total Time (seconds): {:0.4f} +/- {:0.4f}'.format(avg, std))