-- Copyright 2015 Carnegie Mellon University -- -- Licensed under the Apache License, Version 2.0 (the "License"); -- you may not use this file except in compliance with the License. -- You may obtain a copy of the License at -- -- http://www.apache.org/licenses/LICENSE-2.0 -- -- Unless required by applicable law or agreed to in writing, software -- distributed under the License is distributed on an "AS IS" BASIS, -- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -- See the License for the specific language governing permissions and -- limitations under the License. require 'optim' require 'fbnn' require 'image' paths.dofile("OpenFaceOptim.lua") local optimMethod = optim.adadelta local optimState = {} -- Use for other algorithms like SGD local optimator = OpenFaceOptim(model, optimState) trainLogger = optim.Logger(paths.concat(opt.save, 'train.log')) local batchNumber local triplet_loss function train() print('==> doing epoch on training data:') print("==> online epoch # " .. epoch) batchNumber = 0 cutorch.synchronize() -- set the dropouts to training mode model:training() model:cuda() -- get it back on the right GPUs. local tm = torch.Timer() triplet_loss = 0 local i = 1 while batchNumber < opt.epochSize do -- queue jobs to data-workers donkeys:addjob( -- the job callback (runs in data-worker thread) function() local inputs, numPerClass = trainLoader:samplePeople(opt.peoplePerBatch, opt.imagesPerPerson) return sendTensor(inputs), sendTensor(numPerClass) end, -- the end callback (runs in the main thread) trainBatch ) if i % 5 == 0 then donkeys:synchronize() end i = i + 1 end donkeys:synchronize() cutorch.synchronize() triplet_loss = triplet_loss / batchNumber trainLogger:add{ ['avg triplet loss (train set)'] = triplet_loss, } print(string.format('Epoch: [%d][TRAINING SUMMARY] Total Time(s): %.2f\t' .. 'average triplet loss (per batch): %.2f', epoch, tm:time().real, triplet_loss)) print('\n') collectgarbage() local function sanitize(net) net:apply(function (val) for name,field in pairs(val) do if torch.type(field) == 'cdata' then val[name] = nil end if name == 'homeGradBuffers' then val[name] = nil end if name == 'input_gpu' then val['input_gpu'] = {} end if name == 'gradOutput_gpu' then val['gradOutput_gpu'] = {} end if name == 'gradInput_gpu' then val['gradInput_gpu'] = {} end if (name == 'output' or name == 'gradInput') and torch.type(field) == 'torch.CudaTensor' then cutorch.withDevice(field:getDevice(), function() val[name] = field.new() end) end end end) end sanitize(model) torch.save(paths.concat(opt.save, 'model_' .. epoch .. '.t7'), model.modules[1]:float()) torch.save(paths.concat(opt.save, 'optimState_' .. epoch .. '.t7'), optimState) collectgarbage() end -- of train() local inputsCPU = torch.FloatTensor() local numPerClass = torch.FloatTensor() local timer = torch.Timer() function trainBatch(inputsThread, numPerClassThread) if batchNumber >= opt.epochSize then return end cutorch.synchronize() timer:reset() receiveTensor(inputsThread, inputsCPU) receiveTensor(numPerClassThread, numPerClass) -- inputs:resize(inputsCPU:size()):copy(inputsCPU) local numImages = inputsCPU:size(1) local embeddings = torch.Tensor(numImages, 128) local singleNet = model.modules[1] local beginIdx = 1 local inputs = torch.CudaTensor() while beginIdx <= numImages do local endIdx = math.min(beginIdx+opt.batchSize-1, numImages) local range = {{beginIdx,endIdx}} local sz = inputsCPU[range]:size() inputs:resize(sz):copy(inputsCPU[range]) local reps = singleNet:forward(inputs):float() embeddings[range] = reps beginIdx = endIdx + 1 end assert(beginIdx - 1 == numImages) local numTrips = numImages - opt.peoplePerBatch local as = torch.Tensor(numTrips, inputs:size(2), inputs:size(3), inputs:size(4)) local ps = torch.Tensor(numTrips, inputs:size(2), inputs:size(3), inputs:size(4)) local ns = torch.Tensor(numTrips, inputs:size(2), inputs:size(3), inputs:size(4)) function dist(emb1, emb2) local d = emb1 - emb2 return d:cmul(d):sum() end local tripIdx = 1 local shuffle = torch.randperm(numTrips) local embStartIdx = 1 for i = 1,opt.peoplePerBatch do local n = numPerClass[i] for j = 1,n-1 do local aIdx = embStartIdx local pIdx = embStartIdx+j as[shuffle[tripIdx]] = inputsCPU[aIdx] ps[shuffle[tripIdx]] = inputsCPU[pIdx] -- Select a semi-hard negative that has a distance -- further away from the positive exemplar. local posDist = dist(embeddings[aIdx], embeddings[pIdx]) local selNegIdx = embStartIdx while selNegIdx >= embStartIdx and selNegIdx <= embStartIdx+n-1 do selNegIdx = (torch.random() % numImages) + 1 end local selNegDist = dist(embeddings[aIdx], embeddings[selNegIdx]) for k = 1,numImages do if k < embStartIdx or k > embStartIdx+n-1 then local negDist = dist(embeddings[aIdx], embeddings[k]) if posDist < negDist and negDist < selNegDist and math.abs(posDist - negDist) < alpha then selNegDist = negDist selNegIdx = k end end end ns[shuffle[tripIdx]] = inputsCPU[selNegIdx] tripIdx = tripIdx + 1 end embStartIdx = embStartIdx + n end assert(embStartIdx - 1 == numImages) assert(tripIdx - 1 == numTrips) local beginIdx = 1 local asCuda = torch.CudaTensor() local psCuda = torch.CudaTensor() local nsCuda = torch.CudaTensor() -- Return early if the loss is 0 for `numZeros` iterations. local numZeros = 4 local zeroCounts = torch.IntTensor(numZeros):zero() local zeroIdx = 1 -- Return early if the loss shrinks too much. -- local firstLoss = nil -- TODO: Should be <=, but batches with just one image cause errors. while beginIdx < numTrips do local endIdx = math.min(beginIdx+opt.batchSize, numTrips) local range = {{beginIdx,endIdx}} local sz = as[range]:size() asCuda:resize(sz):copy(as[range]) psCuda:resize(sz):copy(ps[range]) nsCuda:resize(sz):copy(ns[range]) local err, outputs = optimator:optimizeTriplet(optimMethod, {asCuda, psCuda, nsCuda}, criterion) cutorch.synchronize() batchNumber = batchNumber + 1 print(('Epoch: [%d][%d/%d]\tTime %.3f\ttripErr %.2e'):format( epoch, batchNumber, opt.epochSize, timer:time().real, err)) timer:reset() triplet_loss = triplet_loss + err -- Return early if the epoch is over. if batchNumber >= opt.epochSize then return end -- Return early if the loss is 0 for `numZeros` iterations. zeroCounts[zeroIdx] = (err == 0.0) and 1 or 0 -- Boolean to int. zeroIdx = (zeroIdx % numZeros) + 1 if zeroCounts:sum() == numZeros then return end -- Return early if the loss shrinks too much. -- if firstLoss == nil then -- firstLoss = err -- else -- -- Triplets trivially satisfied if err=0 -- if err ~= 0 and firstLoss/err > 4 then -- return -- end -- end beginIdx = endIdx + 1 end assert(beginIdx - 1 == numTrips or beginIdx == numTrips) end