#!/usr/bin/env python2 # # Detect outlier faces (not of the same person) in a directory # of aligned images. # Brandon Amos # 2016/02/14 # # Copyright 2015-2016 Carnegie Mellon University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time start = time.time() import argparse import os import glob import numpy as np np.set_printoptions(precision=2) from sklearn.metrics.pairwise import euclidean_distances import cv2 import openface fileDir = os.path.dirname(os.path.realpath(__file__)) modelDir = os.path.join(fileDir, '..', 'models') openfaceModelDir = os.path.join(modelDir, 'openface') def main(): parser = argparse.ArgumentParser() parser.add_argument('--networkModel', type=str, help="Path to Torch network model.", default=os.path.join(openfaceModelDir, 'nn4.small2.v1.t7')) parser.add_argument('--imgDim', type=int, help="Default image dimension.", default=96) parser.add_argument('--cuda', action='store_true') parser.add_argument('--threshold', type=float, default=0.9) parser.add_argument('--delete', action='store_true', help='Delete the outliers.') parser.add_argument('directory') args = parser.parse_args() net = openface.TorchNeuralNet(args.networkModel, args.imgDim, cuda=args.cuda) reps = [] paths = sorted(list(glob.glob(os.path.join(args.directory, '*.png')))) print("=== {} ===".format(args.directory)) for imgPath in paths: if cv2.imread(imgPath) is None: print("Warning: Skipping bad image file: {}".format(imgPath)) if args.delete: # Remove the file if it's not a valid image. os.remove(imgPath) else: reps.append(net.forwardPath(imgPath)) mean = np.mean(reps, axis=0) dists = euclidean_distances(reps, mean) outliers = [] for path, dist in zip(paths, dists): dist = dist.take(0) if dist > args.threshold: outliers.append((path, dist)) print("Found {} outlier(s) from {} images.".format(len(outliers), len(paths))) for path, dist in outliers: print(" + {} ({:0.2f})".format(path, dist)) if args.delete: os.remove(path) if __name__ == '__main__': main()