#!/usr/bin/env th require 'torch' require 'optim' require 'paths' require 'xlua' require 'csvigo' require 'nn' require 'dpnn' local opts = paths.dofile('opts.lua') opt = opts.parse(arg) print(opt) torch.setdefaulttensortype('torch.FloatTensor') if opt.cuda then require 'cutorch' require 'cunn' cutorch.setDevice(opt.device) end opt.manualSeed = 2 torch.manualSeed(opt.manualSeed) paths.dofile('dataset.lua') paths.dofile('batch-represent.lua') model = torch.load(opt.model) model:evaluate() if opt.cuda then model:cuda() end repsCSV = csvigo.File(paths.concat(opt.outDir, "reps.csv"), 'w') labelsCSV = csvigo.File(paths.concat(opt.outDir, "labels.csv"), 'w') batchRepresent() repsCSV:close() labelsCSV:close()