#!/usr/bin/env python2 # # Copyright 2015-2016 Carnegie Mellon University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: This file is incomplete. import os import sys fileDir = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(fileDir, "..")) import argparse import cv2 # import openface.helper from openface.alignment import NaiveDlib modelDir = os.path.join(fileDir, '..', 'models') dlibModelDir = os.path.join(modelDir, 'dlib') openfaceModelDir = os.path.join(modelDir, 'openface') def main(args): align = NaiveDlib(args.dlibFacePredictor) bgrImg = cv2.imread(args.img) if bgrImg is None: raise Exception("Unable to load image: {}".format(args.img)) rgbImg = cv2.cvtColor(bgrImg, cv2.COLOR_BGR2RGB) bb = align.getLargestFaceBoundingBox(rgbImg) if bb is None: raise Exception("Unable to find a face: {}".format(args.img)) landmarks = align.align(rgbImg, bb) if landmarks is None: raise Exception("Unable to align image: {}".format(args.img)) # alignedFace = align.alignImg("affine", args.size, rgbImg, bb, landmarks) bl = (bb.left(), bb.bottom()) tr = (bb.right(), bb.top()) cv2.rectangle(bgrImg, bl, tr, color=(153, 255, 204), thickness=3) for landmark in landmarks: cv2.circle(bgrImg, center=landmark, radius=3, color=(102, 204, 255), thickness=-1) print("Saving image to 'annotated.png'") cv2.imwrite("annotated.png", bgrImg) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('img', type=str, help="Input image.") parser.add_argument('--dlibFacePredictor', type=str, help="Path to dlib's face predictor.", default=os.path.join(dlibModelDir, "shape_predictor_68_face_landmarks.dat")) parser.add_argument('landmarks', type=str, choices=['outerEyesAndNose', 'innerEyesAndBottomLip'], help='The landmarks to align to.') parser.add_argument('--size', type=int, help="Default image size.", default=96) args = parser.parse_args() main(args)