#!/usr/bin/env python2 # # Example to compare the faces in two images. # Brandon Amos # 2015/09/29 # # Copyright 2015-2016 Carnegie Mellon University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time start = time.time() import argparse import cv2 import itertools import os import numpy as np np.set_printoptions(precision=2) import openface fileDir = os.path.dirname(os.path.realpath(__file__)) modelDir = os.path.join(fileDir, '..', 'models') dlibModelDir = os.path.join(modelDir, 'dlib') openfaceModelDir = os.path.join(modelDir, 'openface') parser = argparse.ArgumentParser() parser.add_argument('imgs', type=str, nargs='+', help="Input images.") parser.add_argument('--dlibFacePredictor', type=str, help="Path to dlib's face predictor.", default=os.path.join(dlibModelDir, "shape_predictor_68_face_landmarks.dat")) parser.add_argument('--networkModel', type=str, help="Path to Torch network model.", default=os.path.join(openfaceModelDir, 'nn4.small2.v1.t7')) parser.add_argument('--imgDim', type=int, help="Default image dimension.", default=96) parser.add_argument('--verbose', action='store_true') args = parser.parse_args() if args.verbose: print("Argument parsing and loading libraries took {} seconds.".format( time.time() - start)) start = time.time() align = openface.AlignDlib(args.dlibFacePredictor) net = openface.TorchNeuralNet(args.networkModel, args.imgDim) if args.verbose: print("Loading the dlib and OpenFace models took {} seconds.".format( time.time() - start)) def getRep(imgPath): if args.verbose: print("Processing {}.".format(imgPath)) bgrImg = cv2.imread(imgPath) if bgrImg is None: raise Exception("Unable to load image: {}".format(imgPath)) rgbImg = cv2.cvtColor(bgrImg, cv2.COLOR_BGR2RGB) if args.verbose: print(" + Original size: {}".format(rgbImg.shape)) start = time.time() bb = align.getLargestFaceBoundingBox(rgbImg) if bb is None: raise Exception("Unable to find a face: {}".format(imgPath)) if args.verbose: print(" + Face detection took {} seconds.".format(time.time() - start)) start = time.time() alignedFace = align.align(args.imgDim, rgbImg, bb, landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE) if alignedFace is None: raise Exception("Unable to align image: {}".format(imgPath)) if args.verbose: print(" + Face alignment took {} seconds.".format(time.time() - start)) start = time.time() rep = net.forward(alignedFace) if args.verbose: print(" + OpenFace forward pass took {} seconds.".format(time.time() - start)) print("Representation:") print(rep) print("-----\n") return rep for (img1, img2) in itertools.combinations(args.imgs, 2): d = getRep(img1) - getRep(img2) print("Comparing {} with {}.".format(img1, img2)) print( " + Squared l2 distance between representations: {:0.3f}".format(np.dot(d, d)))