local ffi = require 'ffi' local batchNumber, nImgs = 0 torch.setdefaulttensortype('torch.FloatTensor') function batchRepresent() local loadSize = {3, opt.imgDim, opt.imgDim} print(opt.data) local cacheFile = paths.concat(opt.data, 'cache.t7') print('cache lotation: ', cacheFile) local dumpLoader if paths.filep(cacheFile) then print('Loading metadata from cache.') print('If your dataset has changed, delete the cache file.') dumpLoader = torch.load(cacheFile) else print('Creating metadata for cache.') dumpLoader = dataLoader{ paths = {opt.data}, loadSize = loadSize, sampleSize = loadSize, split = 0, verbose = true } torch.save(cacheFile, dumpLoader) end collectgarbage() nImgs = dumpLoader:sizeTest() print('nImgs: ', nImgs) assert(nImgs > 0, "Failed to get nImgs") batchNumber = 0 for i=1,math.ceil(nImgs/opt.batchSize) do local indexStart = (i-1) * opt.batchSize + 1 local indexEnd = math.min(nImgs, indexStart + opt.batchSize - 1) local batchSz = indexEnd-indexStart+1 local inputs, labels = dumpLoader:get(indexStart, indexEnd) local paths = {} for j=indexStart,indexEnd do table.insert(paths, ffi.string(dumpLoader.imagePath[dumpLoader.testIndices[j]]:data())) end repBatch(paths, inputs, labels, batchSz) if i % 5 == 0 then collectgarbage() end end if opt.cuda then cutorch.synchronize() end end function repBatch(paths, inputs, labels, batchSz) batchNumber = batchNumber + batchSz if opt.cuda then inputs = inputs:cuda() end local embeddings = model:forward(inputs):float() if opt.cuda then cutorch.synchronize() end if batchSz == 1 then embeddings = embeddings:reshape(1, embeddings:size(1)) end for i=1,batchSz do labelsCSV:write({labels[i], paths[i]}) repsCSV:write(embeddings[i]:totable()) end print(('Represent: %d/%d'):format(batchNumber, nImgs)) end