DNN Training: Plot LFW accuracies for #100.
This commit is contained in:
parent
bbff0a01dd
commit
f112398178
|
@ -31,19 +31,19 @@ workDir = os.path.join(scriptDir, 'work')
|
||||||
|
|
||||||
def plot(workDirs):
|
def plot(workDirs):
|
||||||
trainDfs = []
|
trainDfs = []
|
||||||
# testDfs = []
|
testDfs = []
|
||||||
for d in workDirs:
|
for d in workDirs:
|
||||||
trainF = os.path.join(workDir, str(d), 'train.log')
|
trainF = os.path.join(workDir, "{:03d}".format(d), 'train.log')
|
||||||
# testF = os.path.join(workDir, str(d), 'test.log')
|
testF = os.path.join(workDir, "{:03d}".format(d), 'test.log')
|
||||||
trainDfs.append(pd.read_csv(trainF, sep='\t'))
|
trainDfs.append(pd.read_csv(trainF, sep='\t'))
|
||||||
# testDfs.append(pd.read_csv(testF, sep='\t'))
|
testDfs.append(pd.read_csv(testF, sep='\t'))
|
||||||
# if len(trainDfs[-1]) != len(testDfs[-1]):
|
if len(trainDfs[-1]) != len(testDfs[-1]):
|
||||||
# print("Error: Train/test dataframe shapes "
|
print("Error: Train/test dataframe shapes "
|
||||||
# "for '{}' don't match: {}, {}".format(
|
"for '{}' don't match: {}, {}".format(
|
||||||
# d, trainDfs[-1].shape, testDfs[-1].shape))
|
d, trainDfs[-1].shape, testDfs[-1].shape))
|
||||||
# sys.exit(-1)
|
sys.exit(-1)
|
||||||
trainDf = pd.concat(trainDfs, ignore_index=True)
|
trainDf = pd.concat(trainDfs, ignore_index=True)
|
||||||
# testDf = pd.concat(testDfs, ignore_index=True)
|
testDf = pd.concat(testDfs, ignore_index=True)
|
||||||
|
|
||||||
# print("train, test:")
|
# print("train, test:")
|
||||||
# print("\n".join(["{:0.2e}, {:0.2e}".format(x, y) for (x, y) in
|
# print("\n".join(["{:0.2e}, {:0.2e}".format(x, y) for (x, y) in
|
||||||
|
@ -52,18 +52,29 @@ def plot(workDirs):
|
||||||
|
|
||||||
fig, ax = plt.subplots(1, 1)
|
fig, ax = plt.subplots(1, 1)
|
||||||
trainDf.index += 1
|
trainDf.index += 1
|
||||||
# testDf.index += 1
|
trainDf['avg triplet loss (train set)'].plot(ax=ax)
|
||||||
trainDf['avg triplet loss (train set)'].plot(legend='True', ax=ax)
|
|
||||||
# testDf['avg triplet loss (test set)'].plot(legend='True', ax=ax, alpha=0.6)
|
|
||||||
plt.legend(['Train loss, semi-hard triplets']) # 'Test loss, random triplets'])
|
|
||||||
plt.xlabel("Epoch")
|
plt.xlabel("Epoch")
|
||||||
plt.ylabel("Loss")
|
plt.ylabel("Average Triplet Loss, Training")
|
||||||
# plt.ylim(ymin=0)
|
# plt.ylim(ymin=0)
|
||||||
plt.xlim(xmin=1)
|
plt.xlim(xmin=1)
|
||||||
plt.grid(b=True, which='major', color='k', linestyle='-')
|
plt.grid(b=True, which='major', color='k', linestyle='-')
|
||||||
plt.grid(b=True, which='minor', color='k', linestyle='--', alpha=0.2)
|
plt.grid(b=True, which='minor', color='k', linestyle='--', alpha=0.2)
|
||||||
ax.set_yscale('log')
|
ax.set_yscale('log')
|
||||||
fig.savefig(os.path.join(plotDir, "loss.pdf"))
|
d = os.path.join(plotDir, "train-loss.pdf")
|
||||||
|
fig.savefig(d)
|
||||||
|
print("Created {}".format(d))
|
||||||
|
|
||||||
|
fig, ax = plt.subplots(1, 1)
|
||||||
|
testDf.index += 1
|
||||||
|
testDf['lfwAcc'].plot(ax=ax)
|
||||||
|
plt.xlabel("Epoch")
|
||||||
|
plt.ylabel("LFW Accuracy")
|
||||||
|
plt.ylim(ymin=0, ymax=1)
|
||||||
|
# plt.xlim(xmin=1)
|
||||||
|
# ax.set_yscale('log')
|
||||||
|
d = os.path.join(plotDir, "lfw-accuracy.pdf")
|
||||||
|
fig.savefig(d)
|
||||||
|
print("Created {}".format(d))
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
os.makedirs(plotDir, exist_ok=True)
|
os.makedirs(plotDir, exist_ok=True)
|
||||||
|
|
Loading…
Reference in New Issue