nn4.def: Add reasoning behind LRN layers.
This commit is contained in:
parent
4098a586ae
commit
80135c737c
|
@ -28,6 +28,17 @@ function createModel()
|
|||
net:add(nn.SpatialBatchNormalization(64))
|
||||
net:add(nn.ReLU())
|
||||
|
||||
-- The FaceNet paper just says `norm` and that the models are based
|
||||
-- heavily on the inception paper (http://arxiv.org/pdf/1409.4842.pdf),
|
||||
-- which uses pooling and normalization in the same way in the early layers.
|
||||
--
|
||||
-- The Caffe and official versions of this network both use LRN:
|
||||
--
|
||||
-- + https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
|
||||
-- + https://github.com/google/inception/blob/master/inception.ipynb
|
||||
--
|
||||
-- The Caffe docs at http://caffe.berkeleyvision.org/tutorial/layers.html
|
||||
-- define LRN to be across channels.
|
||||
net:add(nn.SpatialMaxPooling(3, 3, 2, 2, 1, 1))
|
||||
net:add(nn.CrossMapNormalization(5, 0.0001, 0.75))
|
||||
|
||||
|
|
Loading…
Reference in New Issue