Comparison demo: Use all combinations of images.
This commit is contained in:
parent
28891143a1
commit
402b453f05
|
@ -23,6 +23,7 @@ import time
|
||||||
start = time.time()
|
start = time.time()
|
||||||
import argparse
|
import argparse
|
||||||
import cv2
|
import cv2
|
||||||
|
import itertools
|
||||||
import os
|
import os
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -42,8 +43,7 @@ facenetModelDir = os.path.join(modelDir, 'facenet')
|
||||||
|
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
parser.add_argument('img1', type=str, help="Input image 1.")
|
parser.add_argument('imgs', type=str, nargs='+', help="Input images.")
|
||||||
parser.add_argument('img2', type=str, help="Input image 2.")
|
|
||||||
parser.add_argument('--dlibFaceMean', type=str, help="Path to dlib's face predictor.",
|
parser.add_argument('--dlibFaceMean', type=str, help="Path to dlib's face predictor.",
|
||||||
default=os.path.join(dlibModelDir, "mean.csv"))
|
default=os.path.join(dlibModelDir, "mean.csv"))
|
||||||
parser.add_argument('--dlibFacePredictor', type=str, help="Path to dlib's face predictor.",
|
parser.add_argument('--dlibFacePredictor', type=str, help="Path to dlib's face predictor.",
|
||||||
|
@ -55,6 +55,7 @@ parser.add_argument('--networkModel', type=str, help="Path to Torch network mode
|
||||||
default=os.path.join(facenetModelDir, 'nn4.v1.t7'))
|
default=os.path.join(facenetModelDir, 'nn4.v1.t7'))
|
||||||
parser.add_argument('--imgDim', type=int, help="Default image dimension.", default=96)
|
parser.add_argument('--imgDim', type=int, help="Default image dimension.", default=96)
|
||||||
parser.add_argument('--cuda', type=bool, default=False)
|
parser.add_argument('--cuda', type=bool, default=False)
|
||||||
|
parser.add_argument('--verbose', type=bool, default=False)
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
@ -62,43 +63,48 @@ sys.path.append(args.dlibRoot)
|
||||||
import dlib
|
import dlib
|
||||||
|
|
||||||
from facenet.alignment import NaiveDlib # Depends on dlib.
|
from facenet.alignment import NaiveDlib # Depends on dlib.
|
||||||
print("Argument parsing and loading libraries took {} seconds.".format(time.time()-start))
|
if args.verbose:
|
||||||
|
print("Argument parsing and loading libraries took {} seconds.".format(time.time()-start))
|
||||||
|
|
||||||
start = time.time()
|
start = time.time()
|
||||||
align = NaiveDlib(args.dlibFaceMean, args.dlibFacePredictor)
|
align = NaiveDlib(args.dlibFaceMean, args.dlibFacePredictor)
|
||||||
net = facenet.TorchWrap(args.networkModel, imgDim=args.imgDim, cuda=args.cuda)
|
net = facenet.TorchWrap(args.networkModel, imgDim=args.imgDim, cuda=args.cuda)
|
||||||
print("Loading the dlib and FaceNet models took {} seconds.".format(time.time()-start))
|
if args.verbose:
|
||||||
|
print("Loading the dlib and FaceNet models took {} seconds.".format(time.time()-start))
|
||||||
|
|
||||||
def getRep(imgPath):
|
def getRep(imgPath):
|
||||||
global i
|
if args.verbose:
|
||||||
print("Processing {}.".format(imgPath))
|
print("Processing {}.".format(imgPath))
|
||||||
img = cv2.imread(imgPath)
|
img = cv2.imread(imgPath)
|
||||||
if img is None:
|
if img is None:
|
||||||
raise Exception("Unable to load image: {}".format(imgPath))
|
raise Exception("Unable to load image: {}".format(imgPath))
|
||||||
print(" + Original size: {}".format(img.shape))
|
if args.verbose:
|
||||||
|
print(" + Original size: {}".format(img.shape))
|
||||||
|
|
||||||
start = time.time()
|
start = time.time()
|
||||||
bb = align.getLargestFaceBoundingBox(img)
|
bb = align.getLargestFaceBoundingBox(img)
|
||||||
if bb is None:
|
if bb is None:
|
||||||
raise Exception("Unable to find a face: {}".format(imgPath))
|
raise Exception("Unable to find a face: {}".format(imgPath))
|
||||||
print(" + Face detection took {} seconds.".format(time.time()-start))
|
if args.verbose:
|
||||||
|
print(" + Face detection took {} seconds.".format(time.time()-start))
|
||||||
|
|
||||||
start = time.time()
|
start = time.time()
|
||||||
alignedFace = align.alignImg("affine", args.imgDim, img, bb)
|
alignedFace = align.alignImg("affine", args.imgDim, img, bb)
|
||||||
if alignedFace is None:
|
if alignedFace is None:
|
||||||
raise Exception("Unable to align image: {}".format(imgPath))
|
raise Exception("Unable to align image: {}".format(imgPath))
|
||||||
print(" + Face alignment took {} seconds.".format(time.time()-start))
|
if args.verbose:
|
||||||
|
print(" + Face alignment took {} seconds.".format(time.time()-start))
|
||||||
|
|
||||||
start = time.time()
|
start = time.time()
|
||||||
t = '/tmp/facenet-compare.png'
|
rep = net.forwardImage(alignedFace)
|
||||||
cv2.imwrite(t, alignedFace)
|
if args.verbose:
|
||||||
rep = np.array(net.forward(t))
|
print(" + FaceNet forward pass took {} seconds.".format(time.time()-start))
|
||||||
os.remove(t)
|
print("Representation:")
|
||||||
print(" + FaceNet forward pass took {} seconds.".format(time.time()-start))
|
print(rep)
|
||||||
print("Representation:")
|
print("-----\n")
|
||||||
print(rep)
|
|
||||||
print("-----\n")
|
|
||||||
return rep
|
return rep
|
||||||
|
|
||||||
d = getRep(args.img1) - getRep(args.img2)
|
for (img1, img2) in itertools.combinations(args.imgs, 2):
|
||||||
print("Squared l2 distance between representations: {}".format(np.dot(d, d)))
|
d = getRep(img1) - getRep(img2)
|
||||||
|
print("Comparing {} with {}.".format(img1, img2))
|
||||||
|
print(" + Squared l2 distance between representations: {}".format(np.dot(d, d)))
|
||||||
|
|
Loading…
Reference in New Issue