Add classification demo.
This commit is contained in:
parent
d15a2b7c71
commit
118b7c0d7a
|
@ -15,4 +15,6 @@ evaluation/*/*.pdf
|
|||
demos/web/bower_components
|
||||
demos/web/unknown*.npy
|
||||
|
||||
models/openface/*.t7
|
||||
models/openface/*.t7
|
||||
models/openface/*.pkl
|
||||
celeb-classifier*
|
49
README.md
49
README.md
|
@ -142,11 +142,11 @@ are aware of on the standard
|
|||
benchmark.
|
||||
We had to fallback to using the deep funneled versions for
|
||||
152 of 13233 images because dlib failed to detect a face or landmarks.
|
||||
We obtain a mean accuracy of 0.8483 ± 0.0172 with an AUC of 0.92.
|
||||
|
||||
![](images/nn4.v1.lfw.roc.png)
|
||||
|
||||
This can be generated with the following commands from the root
|
||||
`openface`
|
||||
This can be generated with the following commands from the root `openface`
|
||||
directory, assuming you have downloaded and placed the raw and
|
||||
deep funneled LFW data from [here](http://vis-www.cs.umass.edu/lfw/)
|
||||
in `./data/lfw/raw` and `./data/lfw/deepfunneled`.
|
||||
|
@ -188,6 +188,45 @@ These can be generated with the following commands from the root
|
|||
4. Generate t-SNE visualization with `./util/tsne.py <feature-directory> --names <name 1> ... <name n>`
|
||||
This creates `tsne.pdf` in `<feature-directory>`.
|
||||
|
||||
# Training a Classifier
|
||||
OpenFace's core provides a feature extraction method to
|
||||
obtain a low-dimensional representation of any face.
|
||||
[demos/classifier.py](demos/classifier.py) shows a demo of
|
||||
how these representations can be used to create a face classifier.
|
||||
|
||||
This is trained on about 6000 total images of the following people,
|
||||
which are the people with the most images in our dataset:
|
||||
|
||||
+ America Ferrera
|
||||
+ Amy Adams
|
||||
+ Anne Hathaway
|
||||
+ Ben Stiller
|
||||
+ Bradley Cooper
|
||||
+ David Boreanaz
|
||||
+ Emily Deschanel
|
||||
+ Eva Longoria
|
||||
+ Jon Hamm
|
||||
+ Steve Carell
|
||||
|
||||
This demo uses [scikit-learn](http://scikit-learn.org) to perform
|
||||
a grid search over SVM parameters.
|
||||
Our trained model obtains 87% accuracy on this set of data.
|
||||
[models/get-models.sh](models/get-models.sh)
|
||||
will automatically download this classifier and place
|
||||
it in `models/openface/celeb-classifier.nn4.v1.pkl`.
|
||||
|
||||
For an example, consider the following small set of images
|
||||
the model has no knowledge of.
|
||||
For an unknown person, a prediction still needs to be made, but
|
||||
the confidence score is usually lower.
|
||||
|
||||
| Person | Image | Prediction | Confidence |
|
||||
|---|---|---|---|
|
||||
| Lennon 1 | <img src='images/examples/lennon-1.jpg' width='200px'></img> | DavidBoreanaz | 0.28 |
|
||||
| Lennon 2 | <img src='images/examples/lennon-2.jpg' width='200px'></img> | DavidBoreanaz | 0.56 |
|
||||
| Carell | <img src='images/examples/carell.jpg' width='200px'></img> | SteveCarell | 0.78 |
|
||||
| Adams | <img src='images/examples/adams.jpg' width='200px'></img> | AmyAdams | 0.87 |
|
||||
|
||||
# Model Definitions
|
||||
Model definitions should be kept in [models/openface](models/openface),
|
||||
where we have provided definitions of the [nn1](models/openface/nn1.def.lua)
|
||||
|
@ -225,8 +264,10 @@ face detection and alignment.
|
|||
These only run on the CPU and take from 100-200ms to over
|
||||
a second.
|
||||
The neural network uses a fixed-size input and has
|
||||
a more consistent runtime, almost 400ms on our 3.70 GHz CPU
|
||||
and 20-40 ms on our Tesla K40 GPU.
|
||||
a more consistent runtime,
|
||||
86.97 ms ± 67.82 ms on our 3.70 GHz CPU
|
||||
32.45 ms ± 12.89 ms on our Tesla K40 GPU,
|
||||
obtained with [util/profile-network.lua](util/profile-network.lua).
|
||||
|
||||
# Usage
|
||||
## Existing Models
|
||||
|
|
|
@ -0,0 +1,151 @@
|
|||
#!/usr/bin/env python2
|
||||
#
|
||||
# Example to classify faces.
|
||||
# Brandon Amos
|
||||
# 2015/10/11
|
||||
#
|
||||
# Copyright 2015 Carnegie Mellon University
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import cv2
|
||||
import itertools
|
||||
import os
|
||||
import pickle
|
||||
|
||||
from operator import itemgetter
|
||||
|
||||
import numpy as np
|
||||
np.set_printoptions(precision=2)
|
||||
import pandas as pd
|
||||
|
||||
import sys
|
||||
fileDir = os.path.dirname(os.path.realpath(__file__))
|
||||
sys.path.append(os.path.join(fileDir, ".."))
|
||||
|
||||
import openface
|
||||
import openface.helper
|
||||
from openface.data import iterImgs
|
||||
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
from sklearn.decomposition import PCA
|
||||
from sklearn.grid_search import GridSearchCV
|
||||
from sklearn.manifold import TSNE
|
||||
from sklearn.svm import SVC
|
||||
|
||||
modelDir = os.path.join(fileDir, '..', 'models')
|
||||
dlibModelDir = os.path.join(modelDir, 'dlib')
|
||||
openfaceModelDir = os.path.join(modelDir, 'openface')
|
||||
|
||||
def getRep(imgPath):
|
||||
img = cv2.imread(imgPath)
|
||||
if img is None:
|
||||
raise Exception("Unable to load image: {}".format(imgPath))
|
||||
if args.verbose:
|
||||
print(" + Original size: {}".format(img.shape))
|
||||
|
||||
bb = align.getLargestFaceBoundingBox(img)
|
||||
if bb is None:
|
||||
raise Exception("Unable to find a face: {}".format(imgPath))
|
||||
|
||||
alignedFace = align.alignImg("affine", args.imgDim, img, bb)
|
||||
if alignedFace is None:
|
||||
raise Exception("Unable to align image: {}".format(imgPath))
|
||||
|
||||
rep = net.forwardImage(alignedFace)
|
||||
return rep
|
||||
|
||||
def train(args):
|
||||
print("Loading embeddings.")
|
||||
fname = "{}/labels.csv".format(args.workDir)
|
||||
labels = pd.read_csv(fname, header=None).as_matrix()[:,1]
|
||||
labels = map(itemgetter(1),
|
||||
map(os.path.split,
|
||||
map(os.path.dirname, labels))) # Get the directory.
|
||||
fname = "{}/reps.csv".format(args.workDir)
|
||||
embeddings = pd.read_csv(fname, header=None).as_matrix()
|
||||
le = LabelEncoder().fit(labels)
|
||||
labelsNum = le.transform(labels)
|
||||
|
||||
param_grid = [
|
||||
{'C': [1, 10, 100, 1000],
|
||||
'kernel': ['linear']},
|
||||
{'C': [1, 10, 100, 1000],
|
||||
'gamma': [0.001, 0.0001],
|
||||
'kernel': ['rbf']}
|
||||
]
|
||||
svm = GridSearchCV(
|
||||
SVC(probability=True),
|
||||
param_grid, verbose=4, cv=5, n_jobs=16
|
||||
).fit(embeddings, labelsNum)
|
||||
print("Best estimator: {}".format(svm.best_estimator_))
|
||||
print("Best score on left out data: {:.2f}".format(svm.best_score_))
|
||||
|
||||
with open("{}/classifier.pkl".format(args.workDir), 'w') as f:
|
||||
pickle.dump((le, svm), f)
|
||||
|
||||
def infer(args):
|
||||
with open("{}/classifier.pkl".format(args.workDir), 'r') as f:
|
||||
(le, svm) = pickle.load(f)
|
||||
rep = getRep(args.img)
|
||||
predictions = svm.predict_proba(rep)[0]
|
||||
maxI = np.argmax(predictions)
|
||||
person = le.inverse_transform(maxI)
|
||||
confidence = predictions[maxI]
|
||||
print("Predict {} with {:.2f} confidence.".format(person, confidence))
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument('workDir', type=str,
|
||||
help="The input work directory containing 'reps.csv' and 'labels.csv'. Obtained from aligning a directory with 'align-dlib' and getting the representations with 'batch-represent'.")
|
||||
parser.add_argument('--dlibFaceMean', type=str,
|
||||
help="Path to dlib's face predictor.",
|
||||
default=os.path.join(dlibModelDir, "mean.csv"))
|
||||
parser.add_argument('--dlibFacePredictor', type=str,
|
||||
help="Path to dlib's face predictor.",
|
||||
default=os.path.join(dlibModelDir,
|
||||
"shape_predictor_68_face_landmarks.dat"))
|
||||
parser.add_argument('--dlibRoot', type=str,
|
||||
default=os.path.expanduser("~/src/dlib-18.16/python_examples"),
|
||||
help="dlib directory with the dlib.so Python library.")
|
||||
parser.add_argument('--networkModel', type=str,
|
||||
help="Path to Torch network model.",
|
||||
default=os.path.join(openfaceModelDir, 'nn4.v1.t7'))
|
||||
parser.add_argument('--imgDim', type=int,
|
||||
help="Default image dimension.", default=96)
|
||||
parser.add_argument('--cuda', action='store_true')
|
||||
parser.add_argument('--verbose', action='store_true')
|
||||
|
||||
subparsers = parser.add_subparsers(dest='mode', help="Mode")
|
||||
trainParser = subparsers.add_parser('train',
|
||||
help="Train a new classifier.")
|
||||
inferParser = subparsers.add_parser('infer',
|
||||
help='Predict who an image contains from a trained classifier.')
|
||||
inferParser.add_argument('img', type=str,
|
||||
help="Input image.")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
sys.path.append(args.dlibRoot)
|
||||
import dlib
|
||||
from openface.alignment import NaiveDlib # Depends on dlib.
|
||||
|
||||
align = NaiveDlib(args.dlibFaceMean, args.dlibFacePredictor)
|
||||
net = openface.TorchWrap(args.networkModel, imgDim=args.imgDim, cuda=args.cuda)
|
||||
|
||||
if args.mode == 'train':
|
||||
train(args)
|
||||
elif args.mode == 'infer':
|
||||
infer(args)
|
Binary file not shown.
After Width: | Height: | Size: 157 KiB |
Binary file not shown.
After Width: | Height: | Size: 476 KiB |
Loading…
Reference in New Issue