Added --multi option to infer operation to show a list of faces detected (#189)
* Added --multi option to infer operation to show a list of faces detected in image * Added testing for infer --multi demo
This commit is contained in:
parent
35c99507a6
commit
041c90f0c1
|
@ -50,7 +50,7 @@ dlibModelDir = os.path.join(modelDir, 'dlib')
|
|||
openfaceModelDir = os.path.join(modelDir, 'openface')
|
||||
|
||||
|
||||
def getRep(imgPath):
|
||||
def getRep(imgPath, multiple=False):
|
||||
start = time.time()
|
||||
bgrImg = cv2.imread(imgPath)
|
||||
if bgrImg is None:
|
||||
|
@ -65,29 +65,38 @@ def getRep(imgPath):
|
|||
|
||||
start = time.time()
|
||||
|
||||
bb = align.getLargestFaceBoundingBox(rgbImg)
|
||||
if bb is None:
|
||||
if multiple:
|
||||
bbs = align.getAllFaceBoundingBoxes(rgbImg)
|
||||
else:
|
||||
bb1 = align.getLargestFaceBoundingBox(rgbImg)
|
||||
bbs = [bb1]
|
||||
if len(bbs) == 0 or (not multiple and bb1 is None):
|
||||
raise Exception("Unable to find a face: {}".format(imgPath))
|
||||
if args.verbose:
|
||||
print("Face detection took {} seconds.".format(time.time() - start))
|
||||
|
||||
start = time.time()
|
||||
alignedFace = align.align(
|
||||
args.imgDim,
|
||||
rgbImg,
|
||||
bb,
|
||||
landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)
|
||||
if alignedFace is None:
|
||||
raise Exception("Unable to align image: {}".format(imgPath))
|
||||
if args.verbose:
|
||||
print("Alignment took {} seconds.".format(time.time() - start))
|
||||
reps = []
|
||||
for bb in bbs:
|
||||
start = time.time()
|
||||
alignedFace = align.align(
|
||||
args.imgDim,
|
||||
rgbImg,
|
||||
bb,
|
||||
landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)
|
||||
if alignedFace is None:
|
||||
raise Exception("Unable to align image: {}".format(imgPath))
|
||||
if args.verbose:
|
||||
print("Alignment took {} seconds.".format(time.time() - start))
|
||||
print("This bbox is centered at {}, {}".format(bb.center().x, bb.center().y))
|
||||
|
||||
start = time.time()
|
||||
rep = net.forward(alignedFace)
|
||||
if args.verbose:
|
||||
print("Neural network forward pass took {} seconds.".format(
|
||||
time.time() - start))
|
||||
return rep
|
||||
start = time.time()
|
||||
rep = net.forward(alignedFace)
|
||||
if args.verbose:
|
||||
print("Neural network forward pass took {} seconds.".format(
|
||||
time.time() - start))
|
||||
reps.append((bb.center().x, rep))
|
||||
sreps = sorted(reps, key=lambda x: x[0])
|
||||
return sreps
|
||||
|
||||
|
||||
def train(args):
|
||||
|
@ -161,24 +170,33 @@ def train(args):
|
|||
pickle.dump((le, clf), f)
|
||||
|
||||
|
||||
def infer(args):
|
||||
def infer(args, multiple=False):
|
||||
with open(args.classifierModel, 'r') as f:
|
||||
(le, clf) = pickle.load(f)
|
||||
|
||||
for img in args.imgs:
|
||||
print("\n=== {} ===".format(img))
|
||||
rep = getRep(img).reshape(1, -1)
|
||||
start = time.time()
|
||||
predictions = clf.predict_proba(rep).ravel()
|
||||
maxI = np.argmax(predictions)
|
||||
person = le.inverse_transform(maxI)
|
||||
confidence = predictions[maxI]
|
||||
if args.verbose:
|
||||
print("Prediction took {} seconds.".format(time.time() - start))
|
||||
print("Predict {} with {:.2f} confidence.".format(person, confidence))
|
||||
if isinstance(clf, GMM):
|
||||
dist = np.linalg.norm(rep - clf.means_[maxI])
|
||||
print(" + Distance from the mean: {}".format(dist))
|
||||
reps = getRep(img, multiple)
|
||||
if len(reps) > 1:
|
||||
print("List of faces in image from left to right")
|
||||
for r in reps:
|
||||
rep = r[1].reshape(1, -1)
|
||||
bbx = r[0]
|
||||
start = time.time()
|
||||
predictions = clf.predict_proba(rep).ravel()
|
||||
maxI = np.argmax(predictions)
|
||||
person = le.inverse_transform(maxI)
|
||||
confidence = predictions[maxI]
|
||||
if args.verbose:
|
||||
print("Prediction took {} seconds.".format(time.time() - start))
|
||||
if multiple:
|
||||
print("Predict {} @ x={} with {:.2f} confidence.".format(person, bbx,
|
||||
confidence))
|
||||
else:
|
||||
print("Predict {} with {:.2f} confidence.".format(person, confidence))
|
||||
if isinstance(clf, GMM):
|
||||
dist = np.linalg.norm(rep - clf.means_[maxI])
|
||||
print(" + Distance from the mean: {}".format(dist))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -234,6 +252,8 @@ if __name__ == '__main__':
|
|||
help='The Python pickle representing the classifier. This is NOT the Torch network model, which can be set with --networkModel.')
|
||||
inferParser.add_argument('imgs', type=str, nargs='+',
|
||||
help="Input image.")
|
||||
inferParser.add_argument('--multi', help="Infer multiple faces in image",
|
||||
action="store_true")
|
||||
|
||||
args = parser.parse_args()
|
||||
if args.verbose:
|
||||
|
@ -266,4 +286,4 @@ Use `--networkModel` to set a non-standard Torch network model.""")
|
|||
if args.mode == 'train':
|
||||
train(args)
|
||||
elif args.mode == 'infer':
|
||||
infer(args)
|
||||
infer(args, args.multi)
|
||||
|
|
Binary file not shown.
After Width: | Height: | Size: 109 KiB |
|
@ -51,6 +51,20 @@ def test_classification_demo_pretrained():
|
|||
assert "Predict SteveCarell with 0.97 confidence." in out
|
||||
|
||||
|
||||
def test_classification_demo_pretrained_multi():
|
||||
cmd = ['python2', os.path.join(openfaceDir, 'demos', 'classifier.py'),
|
||||
'infer', '--multi',
|
||||
os.path.join(openfaceDir, 'models', 'openface',
|
||||
'celeb-classifier.nn4.small2.v1.pkl'),
|
||||
os.path.join(exampleImages, 'longoria-cooper.jpg')]
|
||||
p = Popen(cmd, stdout=PIPE, stderr=PIPE)
|
||||
(out, err) = p.communicate()
|
||||
print(out)
|
||||
print(err)
|
||||
assert "Predict EvaLongoria @ x=91 with 0.99 confidence." in out
|
||||
assert "Predict BradleyCooper @ x=191 with 0.99 confidence." in out
|
||||
|
||||
|
||||
def test_classification_demo_training():
|
||||
assert os.path.isdir(lfwSubset), "Get lfw-subset by running ./data/download-lfw-subset.sh"
|
||||
|
||||
|
|
Loading…
Reference in New Issue