Added --multi option to infer operation to show a list of faces detected (#189)

* Added --multi option to infer operation to show a list of faces detected in image

* Added testing for infer --multi demo
This commit is contained in:
NMA 2016-09-22 16:21:04 +05:30 committed by Brandon Amos
parent 35c99507a6
commit 041c90f0c1
3 changed files with 67 additions and 33 deletions

View File

@ -50,7 +50,7 @@ dlibModelDir = os.path.join(modelDir, 'dlib')
openfaceModelDir = os.path.join(modelDir, 'openface')
def getRep(imgPath):
def getRep(imgPath, multiple=False):
start = time.time()
bgrImg = cv2.imread(imgPath)
if bgrImg is None:
@ -65,29 +65,38 @@ def getRep(imgPath):
start = time.time()
bb = align.getLargestFaceBoundingBox(rgbImg)
if bb is None:
if multiple:
bbs = align.getAllFaceBoundingBoxes(rgbImg)
else:
bb1 = align.getLargestFaceBoundingBox(rgbImg)
bbs = [bb1]
if len(bbs) == 0 or (not multiple and bb1 is None):
raise Exception("Unable to find a face: {}".format(imgPath))
if args.verbose:
print("Face detection took {} seconds.".format(time.time() - start))
start = time.time()
alignedFace = align.align(
args.imgDim,
rgbImg,
bb,
landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)
if alignedFace is None:
raise Exception("Unable to align image: {}".format(imgPath))
if args.verbose:
print("Alignment took {} seconds.".format(time.time() - start))
reps = []
for bb in bbs:
start = time.time()
alignedFace = align.align(
args.imgDim,
rgbImg,
bb,
landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)
if alignedFace is None:
raise Exception("Unable to align image: {}".format(imgPath))
if args.verbose:
print("Alignment took {} seconds.".format(time.time() - start))
print("This bbox is centered at {}, {}".format(bb.center().x, bb.center().y))
start = time.time()
rep = net.forward(alignedFace)
if args.verbose:
print("Neural network forward pass took {} seconds.".format(
time.time() - start))
return rep
start = time.time()
rep = net.forward(alignedFace)
if args.verbose:
print("Neural network forward pass took {} seconds.".format(
time.time() - start))
reps.append((bb.center().x, rep))
sreps = sorted(reps, key=lambda x: x[0])
return sreps
def train(args):
@ -161,24 +170,33 @@ def train(args):
pickle.dump((le, clf), f)
def infer(args):
def infer(args, multiple=False):
with open(args.classifierModel, 'r') as f:
(le, clf) = pickle.load(f)
for img in args.imgs:
print("\n=== {} ===".format(img))
rep = getRep(img).reshape(1, -1)
start = time.time()
predictions = clf.predict_proba(rep).ravel()
maxI = np.argmax(predictions)
person = le.inverse_transform(maxI)
confidence = predictions[maxI]
if args.verbose:
print("Prediction took {} seconds.".format(time.time() - start))
print("Predict {} with {:.2f} confidence.".format(person, confidence))
if isinstance(clf, GMM):
dist = np.linalg.norm(rep - clf.means_[maxI])
print(" + Distance from the mean: {}".format(dist))
reps = getRep(img, multiple)
if len(reps) > 1:
print("List of faces in image from left to right")
for r in reps:
rep = r[1].reshape(1, -1)
bbx = r[0]
start = time.time()
predictions = clf.predict_proba(rep).ravel()
maxI = np.argmax(predictions)
person = le.inverse_transform(maxI)
confidence = predictions[maxI]
if args.verbose:
print("Prediction took {} seconds.".format(time.time() - start))
if multiple:
print("Predict {} @ x={} with {:.2f} confidence.".format(person, bbx,
confidence))
else:
print("Predict {} with {:.2f} confidence.".format(person, confidence))
if isinstance(clf, GMM):
dist = np.linalg.norm(rep - clf.means_[maxI])
print(" + Distance from the mean: {}".format(dist))
if __name__ == '__main__':
@ -234,6 +252,8 @@ if __name__ == '__main__':
help='The Python pickle representing the classifier. This is NOT the Torch network model, which can be set with --networkModel.')
inferParser.add_argument('imgs', type=str, nargs='+',
help="Input image.")
inferParser.add_argument('--multi', help="Infer multiple faces in image",
action="store_true")
args = parser.parse_args()
if args.verbose:
@ -266,4 +286,4 @@ Use `--networkModel` to set a non-standard Torch network model.""")
if args.mode == 'train':
train(args)
elif args.mode == 'infer':
infer(args)
infer(args, args.multi)

Binary file not shown.

After

Width:  |  Height:  |  Size: 109 KiB

View File

@ -51,6 +51,20 @@ def test_classification_demo_pretrained():
assert "Predict SteveCarell with 0.97 confidence." in out
def test_classification_demo_pretrained_multi():
cmd = ['python2', os.path.join(openfaceDir, 'demos', 'classifier.py'),
'infer', '--multi',
os.path.join(openfaceDir, 'models', 'openface',
'celeb-classifier.nn4.small2.v1.pkl'),
os.path.join(exampleImages, 'longoria-cooper.jpg')]
p = Popen(cmd, stdout=PIPE, stderr=PIPE)
(out, err) = p.communicate()
print(out)
print(err)
assert "Predict EvaLongoria @ x=91 with 0.99 confidence." in out
assert "Predict BradleyCooper @ x=191 with 0.99 confidence." in out
def test_classification_demo_training():
assert os.path.isdir(lfwSubset), "Get lfw-subset by running ./data/download-lfw-subset.sh"