openface/training/data.lua

50 lines
1.7 KiB
Lua
Raw Normal View History

2015-12-27 06:11:44 +08:00
-- Source: https://github.com/soumith/imagenet-multiGPU.torch/blob/master/data.lua
--
-- Copyright (c) 2014, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
local Threads = require 'threads'
-- This script contains the logic to create K threads for parallel data-loading.
-- For the data-loading details, look at donkey.lua
-------------------------------------------------------------------------------
do -- start K datathreads (donkeys)
if opt.nDonkeys > 0 then
local options = opt -- make an upvalue to serialize over to donkey threads
donkeys = Threads(
opt.nDonkeys,
function()
require 'torch'
end,
function(idx)
opt = options -- pass to all donkeys via upvalue
tid = idx
local seed = opt.manualSeed + idx
torch.manualSeed(seed)
print(string.format('Starting donkey with id: %d seed: %d', tid, seed))
paths.dofile('donkey.lua')
end
);
else -- single threaded data loading. useful for debugging
paths.dofile('donkey.lua')
donkeys = {}
2015-12-27 22:09:14 +08:00
function donkeys:addjob(f1, f2) f2(f1()) end
function donkeys:synchronize() end
end
end
nClasses = nil
classes = nil
2015-12-27 21:41:49 +08:00
donkeys:addjob(
function() return trainLoader.classes end,
function(c) classes = c end)
donkeys:synchronize()
nClasses = #classes
assert(nClasses, "Failed to get nClasses")
print('nClasses: ', nClasses)
torch.save(paths.concat(opt.save, 'classes.t7'), classes)