openface/training/attic/test-hardNeg.lua

219 lines
6.7 KiB
Lua
Raw Normal View History

-- Copyright 2015-2016 Carnegie Mellon University
--
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
--
-- http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.
testLogger = optim.Logger(paths.concat(opt.save, 'test.log'))
local batchNumber
local triplet_loss
local timer = torch.Timer()
function test()
print('==> doing epoch on validation data:')
print("==> online epoch # " .. epoch)
batchNumber = 0
cutorch.synchronize()
timer:reset()
model:evaluate()
model:cuda()
triplet_loss = 0
local i = 1
while batchNumber < opt.epochSize do
donkeys:addjob(
function()
local inputs, numPerClass = trainLoader:samplePeople(opt.peoplePerBatch,
opt.imagesPerPerson)
inputs = inputs:float()
numPerClass = numPerClass:float()
return sendTensor(inputs), sendTensor(numPerClass)
end,
testBatch
)
if i % 5 == 0 then
donkeys:synchronize()
collectgarbage()
end
i = i + 1
end
donkeys:synchronize()
cutorch.synchronize()
triplet_loss = triplet_loss / opt.testEpochSize
testLogger:add{
['avg triplet loss (test set)'] = triplet_loss
}
print(string.format('Epoch: [%d][TESTING SUMMARY] Total Time(s): %.2f \t'
.. 'average triplet loss (per batch): %.2f',
epoch, timer:time().real, triplet_loss))
print('\n')
end
local inputsCPU = torch.FloatTensor()
local numPerClass = torch.FloatTensor()
function testBatch(inputsThread, numPerClassThread)
if batchNumber >= opt.epochSize then
return
end
cutorch.synchronize()
timer:reset()
receiveTensor(inputsThread, inputsCPU)
receiveTensor(numPerClassThread, numPerClass)
-- inputs:resize(inputsCPU:size()):copy(inputsCPU)
local numImages = inputsCPU:size(1)
local embeddings = torch.Tensor(numImages, 128)
local singleNet = model.modules[1]
local beginIdx = 1
local inputs = torch.CudaTensor()
while beginIdx <= numImages do
local endIdx = math.min(beginIdx+opt.testBatchSize-1, numImages)
local range = {{beginIdx,endIdx}}
local sz = inputsCPU[range]:size()
inputs:resize(sz):copy(inputsCPU[range])
local reps = singleNet:forward(inputs):float()
embeddings[range] = reps
beginIdx = endIdx + 1
end
assert(beginIdx - 1 == numImages)
local numTrips = numImages - opt.peoplePerBatch
local as = torch.Tensor(numTrips, inputs:size(2),
inputs:size(3), inputs:size(4))
local ps = torch.Tensor(numTrips, inputs:size(2),
inputs:size(3), inputs:size(4))
local ns = torch.Tensor(numTrips, inputs:size(2),
inputs:size(3), inputs:size(4))
function dist(emb1, emb2)
local d = emb1 - emb2
return d:cmul(d):sum()
end
local tripIdx = 1
local shuffle = torch.randperm(numTrips)
local embStartIdx = 1
local nRandomNegs = 0
for i = 1,opt.peoplePerBatch do
local n = numPerClass[i]
for j = 1,n-1 do
local aIdx = embStartIdx
local pIdx = embStartIdx+j
as[shuffle[tripIdx]] = inputsCPU[aIdx]
ps[shuffle[tripIdx]] = inputsCPU[pIdx]
-- Select a semi-hard negative that has a distance
-- further away from the positive exemplar.
local posDist = dist(embeddings[aIdx], embeddings[pIdx])
local selNegIdx = embStartIdx
while selNegIdx >= embStartIdx and selNegIdx <= embStartIdx+n-1 do
selNegIdx = (torch.random() % numImages) + 1
end
local selNegDist = dist(embeddings[aIdx], embeddings[selNegIdx])
local randomNeg = true
for k = 1,numImages do
if k < embStartIdx or k > embStartIdx+n-1 then
local negDist = dist(embeddings[aIdx], embeddings[k])
if posDist < negDist and negDist < selNegDist and
math.abs(posDist-negDist) < alpha then
randomNeg = false
selNegDist = negDist
selNegIdx = k
end
end
end
if randomNeg then
nRandomNegs = nRandomNegs + 1
end
ns[shuffle[tripIdx]] = inputsCPU[selNegIdx]
tripIdx = tripIdx + 1
end
embStartIdx = embStartIdx + n
end
assert(embStartIdx - 1 == numImages)
assert(tripIdx - 1 == numTrips)
print((' + (nRandomNegs, nTrips) = (%d, %d)'):format(nRandomNegs, numTrips))
2015-12-27 21:41:49 +08:00
beginIdx = 1
local asCuda = torch.CudaTensor()
local psCuda = torch.CudaTensor()
local nsCuda = torch.CudaTensor()
-- Return early if the loss is 0 for `numZeros` iterations.
local numZeros = 4
local zeroCounts = torch.IntTensor(numZeros):zero()
local zeroIdx = 1
-- Return early if the loss shrinks too much.
-- local firstLoss = nil
-- TODO: Should be <=, but batches with just one image cause errors.
while beginIdx < numTrips do
local endIdx = math.min(beginIdx+opt.testBatchSize, numTrips)
local range = {{beginIdx,endIdx}}
local sz = as[range]:size()
asCuda:resize(sz):copy(as[range])
psCuda:resize(sz):copy(ps[range])
nsCuda:resize(sz):copy(ns[range])
local output = model:forward({asCuda, psCuda, nsCuda})
local err = criterion:forward(output)
cutorch.synchronize()
batchNumber = batchNumber + 1
print(string.format('Epoch: [%d][%d/%d] Triplet Loss: %.2f',
epoch, batchNumber, opt.testEpochSize, err))
timer:reset()
triplet_loss = triplet_loss + err
-- Return early if the epoch is over.
if batchNumber >= opt.epochSize then
return
end
-- Return early if the loss is 0 for `numZeros` iterations.
zeroCounts[zeroIdx] = (err == 0.0) and 1 or 0 -- Boolean to int.
zeroIdx = (zeroIdx % numZeros) + 1
if zeroCounts:sum() == numZeros then
return
end
-- Return early if the loss shrinks too much.
-- if firstLoss == nil then
-- firstLoss = err
-- else
-- -- Triplets trivially satisfied if err=0
-- if err ~= 0 and firstLoss/err > 4 then
-- return
-- end
-- end
beginIdx = endIdx + 1
end
assert(beginIdx - 1 == numTrips or beginIdx == numTrips)
end