openface/training/util.lua

68 lines
2.1 KiB
Lua
Raw Normal View History

2015-12-27 06:11:44 +08:00
-- Source: https://github.com/soumith/imagenet-multiGPU.torch/blob/master/util.lua
local ffi=require 'ffi'
------ Some FFI stuff used to pass storages between threads ------------------
ffi.cdef[[
void THFloatStorage_free(THFloatStorage *self);
void THLongStorage_free(THLongStorage *self);
]]
2015-12-27 21:41:49 +08:00
local function setFloatStorage(tensor, storage_p)
assert(storage_p and storage_p ~= 0, "FloatStorage is NULL pointer");
local cstorage = ffi.cast('THFloatStorage*', torch.pointer(tensor:storage()))
if cstorage ~= nil then
ffi.C['THFloatStorage_free'](cstorage)
end
local storage = ffi.cast('THFloatStorage*', storage_p)
tensor:cdata().storage = storage
end
2015-12-27 21:41:49 +08:00
local function setLongStorage(tensor, storage_p)
assert(storage_p and storage_p ~= 0, "LongStorage is NULL pointer");
local cstorage = ffi.cast('THLongStorage*', torch.pointer(tensor:storage()))
if cstorage ~= nil then
ffi.C['THLongStorage_free'](cstorage)
end
local storage = ffi.cast('THLongStorage*', storage_p)
tensor:cdata().storage = storage
end
function sendTensor(inputs)
local size = inputs:size()
local ttype = inputs:type()
local i_stg = tonumber(ffi.cast('intptr_t', torch.pointer(inputs:storage())))
inputs:cdata().storage = nil
return {i_stg, size, ttype}
end
function receiveTensor(obj, buffer)
local pointer = obj[1]
local size = obj[2]
local ttype = obj[3]
if buffer then
buffer:resize(size)
assert(buffer:type() == ttype, 'Buffer is wrong type')
else
buffer = torch[ttype].new():resize(size)
end
if ttype == 'torch.FloatTensor' then
setFloatStorage(buffer, pointer)
elseif ttype == 'torch.LongTensor' then
setLongStorage(buffer, pointer)
else
error('Unknown type')
end
return buffer
end
--Reduce the memory consumption by model by sharing the buffers
function optimizeNet( model, inputSize )
2016-03-31 18:00:17 +08:00
local optnet = require 'optnet'
local opts = {inplace=true, mode='training', removeGradParams=false}
local input = torch.Tensor(1,3,inputSize,inputSize)
if opt.cuda then
input = input:cuda()
end
2016-03-31 18:00:17 +08:00
optnet.optimizeMemory(model, input, opts)
end