145 lines
5.6 KiB
Python
145 lines
5.6 KiB
Python
|
#!/usr/bin/env python2
|
||
|
#
|
||
|
# Copyright 2015 Carnegie Mellon University
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import sys
|
||
|
sys.path.append(".")
|
||
|
|
||
|
import argparse
|
||
|
import cv2
|
||
|
import os
|
||
|
import random
|
||
|
import shutil
|
||
|
|
||
|
from skimage import io
|
||
|
|
||
|
def write(vals, fName):
|
||
|
if os.path.isfile(fName):
|
||
|
print("{} exists. Backing up.".format(fName))
|
||
|
os.rename(fName, "{}.bak".format(fName))
|
||
|
with open(fName, 'w') as f:
|
||
|
for p in vals:
|
||
|
f.write(",".join(str(x) for x in p))
|
||
|
f.write("\n")
|
||
|
|
||
|
def computeMeanMain(args):
|
||
|
dlibAlign = NaiveDlib(args.facePredictorPath)
|
||
|
|
||
|
imgs = list(iterImgs(args.inputDir))
|
||
|
if args.numImages > 0:
|
||
|
imgs = random.sample(imgs, args.numImages)
|
||
|
|
||
|
facePoints = []
|
||
|
for img in imgs:
|
||
|
rgb = img.getRGB()
|
||
|
bb = dlibAlign.getLargestFaceBoundingBox(rgb)
|
||
|
alignedPoints = dlibAlign.align(rgb, bb)
|
||
|
if alignedPoints:
|
||
|
facePoints.append(alignedPoints)
|
||
|
|
||
|
facePointsNp = np.array(facePoints)
|
||
|
mean = np.mean(facePointsNp, axis=0)
|
||
|
std = np.std(facePointsNp, axis=0)
|
||
|
|
||
|
write(mean, "{}/mean.csv".format(args.modelDir))
|
||
|
write(std, "{}/std.csv".format(args.modelDir))
|
||
|
|
||
|
# Only import in this mode.
|
||
|
import matplotlib as mpl
|
||
|
mpl.use('Agg')
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
fig, ax = plt.subplots()
|
||
|
ax.scatter(mean[:,0], -mean[:,1], color='k')
|
||
|
ax.axis('equal')
|
||
|
for i,p in enumerate(mean):
|
||
|
ax.annotate(str(i), (p[0]+0.005, -p[1]+0.005), fontsize=8)
|
||
|
plt.savefig("{}/mean.png".format(args.modelDir))
|
||
|
|
||
|
|
||
|
def alignMain(args):
|
||
|
facenet.helper.mkdirP(args.outputDir)
|
||
|
|
||
|
imgs = list(iterImgs(args.inputDir))
|
||
|
|
||
|
# Shuffle so multiple versions can be run at once.
|
||
|
random.shuffle(imgs)
|
||
|
|
||
|
dlibAlign = facenet.alignment.NaiveDlib(args.modelDir,
|
||
|
args.facePredictorName)
|
||
|
|
||
|
nFallbacks = 0
|
||
|
for imgObject in imgs:
|
||
|
outDir = os.path.join(args.outputDir, imgObject.cls)
|
||
|
imgName = "{}/{}.png".format(outDir, imgObject.name)
|
||
|
facenet.helper.mkdirP(outDir)
|
||
|
if not os.path.isfile(imgName):
|
||
|
rgb = imgObject.getRGB(cache=False)
|
||
|
out = dlibAlign.alignImg(args.method, args.size, rgb)
|
||
|
if args.fallbackLfw and out is None:
|
||
|
nFallbacks += 1
|
||
|
deepFunneled = "{}/{}.jpg".format(os.path.join(args.fallbackLfw,
|
||
|
imgObject.cls),
|
||
|
imgObject.name)
|
||
|
shutil.copy(deepFunneled, "{}/{}.jpg".format(os.path.join(args.outputDir,
|
||
|
imgObject.cls),
|
||
|
imgObject.name))
|
||
|
|
||
|
if out is not None:
|
||
|
io.imsave(imgName, out)
|
||
|
print('nFallbacks:', nFallbacks)
|
||
|
|
||
|
if __name__=='__main__':
|
||
|
parser = argparse.ArgumentParser()
|
||
|
|
||
|
parser.add_argument('inputDir', type=str, help="Input image directory.")
|
||
|
parser.add_argument('--modelDir', type=str, help="Directory of dlib's predictor and mean image models.",
|
||
|
default="./models/dlib/")
|
||
|
parser.add_argument('--facePredictorName', type=str, help="Name of the face predictor.",
|
||
|
default="shape_predictor_68_face_landmarks.dat")
|
||
|
parser.add_argument('--dlibRoot', type=str,
|
||
|
default="/home/bamos/src/dlib-18.15/python_examples",
|
||
|
help="dlib directory with the dlib.so Python library.")
|
||
|
|
||
|
subparsers = parser.add_subparsers(dest='mode', help="Mode")
|
||
|
computeMeanParser = subparsers.add_parser('computeMean', help='Compute the image mean of a directory of images.')
|
||
|
computeMeanParser.add_argument('--numImages', type=int, help="The number of images. '0' for all images.",
|
||
|
default=0) # <= 0 ===> all imgs
|
||
|
alignmentParser = subparsers.add_parser('align', help='Align a directory of images.')
|
||
|
alignmentParser.add_argument('method', type=str,
|
||
|
choices=['tightcrop', 'affine',
|
||
|
'perspective', 'homography'],
|
||
|
help="Alignment method.")
|
||
|
alignmentParser.add_argument('outputDir', type=str, help="Output directory of aligned images.")
|
||
|
alignmentParser.add_argument('--outputDebugImages', action='store_true',
|
||
|
help='Output annotated images for debugging and presenting.')
|
||
|
alignmentParser.add_argument('--size', type=int, help="Default image size.",
|
||
|
default=152)
|
||
|
alignmentParser.add_argument('--fallbackLfw', type=str,
|
||
|
help="If alignment doesn't work, fallback to copying the deep funneled version from this directory..")
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
sys.path.append(args.dlibRoot)
|
||
|
import facenet
|
||
|
import facenet.helper
|
||
|
from facenet.data import iterImgs
|
||
|
from facenet.alignment import NaiveDlib
|
||
|
|
||
|
if args.mode == 'computeMean':
|
||
|
computeMeanMain(args)
|
||
|
else:
|
||
|
alignMain(args)
|