2015-11-01 20:52:46 +08:00
|
|
|
# Usage
|
2015-12-25 02:52:39 +08:00
|
|
|
|
|
|
|
## [API Documentation](http://openface-api.readthedocs.org/en/latest/index.html)
|
|
|
|
|
|
|
|
## Example
|
|
|
|
|
2015-11-01 21:09:21 +08:00
|
|
|
See [the image comparison demo](https://github.com/cmusatyalab/openface/blob/master/demos/compare.py) for a complete example
|
2015-11-01 20:52:46 +08:00
|
|
|
written in Python using a naive Torch subprocess to process the faces.
|
|
|
|
|
|
|
|
```Python
|
|
|
|
import openface
|
|
|
|
|
|
|
|
# `args` are parsed command-line arguments.
|
|
|
|
|
2015-12-30 08:57:29 +08:00
|
|
|
align = openface.AlignDlib(args.dlibFacePredictor)
|
|
|
|
net = openface.TorchNeuralNet(args.networkModel, args.imgDim, cuda=args.cuda)
|
2015-11-01 20:52:46 +08:00
|
|
|
|
|
|
|
# `img` is a numpy matrix containing the RGB pixels of the image.
|
|
|
|
bb = align.getLargestFaceBoundingBox(img)
|
|
|
|
alignedFace = align.alignImg("affine", args.imgDim, img, bb)
|
|
|
|
rep1 = net.forwardImage(alignedFace)
|
|
|
|
|
|
|
|
# `rep2` obtained similarly.
|
|
|
|
d = rep1 - rep2
|
|
|
|
distance = np.dot(d, d)
|
|
|
|
```
|