mirror of https://github.com/davisking/dlib.git
356 lines
12 KiB
C++
356 lines
12 KiB
C++
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
|
/*
|
|
This program was used to train the resnet34_1000_imagenet_classifier.dnn
|
|
network used by the dnn_imagenet_ex.cpp example program.
|
|
|
|
You should be familiar with dlib's DNN module before reading this example
|
|
program. So read dnn_inception_ex.cpp and dnn_introduction2_ex.cpp first.
|
|
*/
|
|
|
|
|
|
|
|
#include <dlib/dnn.h>
|
|
#include <iostream>
|
|
#include <dlib/data_io.h>
|
|
#include <dlib/image_transforms.h>
|
|
#include <dlib/dir_nav.h>
|
|
#include <iterator>
|
|
#include <thread>
|
|
|
|
using namespace std;
|
|
using namespace dlib;
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
|
|
using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;
|
|
|
|
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
|
|
using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;
|
|
|
|
template <int N, template <typename> class BN, int stride, typename SUBNET>
|
|
using block = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;
|
|
|
|
|
|
template <int N, typename SUBNET> using res = relu<residual<block,N,bn_con,SUBNET>>;
|
|
template <int N, typename SUBNET> using ares = relu<residual<block,N,affine,SUBNET>>;
|
|
template <int N, typename SUBNET> using res_down = relu<residual_down<block,N,bn_con,SUBNET>>;
|
|
template <int N, typename SUBNET> using ares_down = relu<residual_down<block,N,affine,SUBNET>>;
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
// training network type
|
|
using net_type = loss_multiclass_log<fc<1000,avg_pool_everything<
|
|
res<512,res<512,res_down<512,
|
|
res<256,res<256,res<256,res<256,res<256,res_down<256,
|
|
res<128,res<128,res<128,res_down<128,
|
|
res<64,res<64,res<64,
|
|
max_pool<3,3,2,2,relu<bn_con<con<64,7,7,2,2,
|
|
input_rgb_image_sized<227>
|
|
>>>>>>>>>>>>>>>>>>>>>>>;
|
|
|
|
// testing network type (replaced batch normalization with fixed affine transforms)
|
|
using anet_type = loss_multiclass_log<fc<1000,avg_pool_everything<
|
|
ares<512,ares<512,ares_down<512,
|
|
ares<256,ares<256,ares<256,ares<256,ares<256,ares_down<256,
|
|
ares<128,ares<128,ares<128,ares_down<128,
|
|
ares<64,ares<64,ares<64,
|
|
max_pool<3,3,2,2,relu<affine<con<64,7,7,2,2,
|
|
input_rgb_image_sized<227>
|
|
>>>>>>>>>>>>>>>>>>>>>>>;
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
rectangle make_random_cropping_rect_resnet(
|
|
const matrix<rgb_pixel>& img,
|
|
dlib::rand& rnd
|
|
)
|
|
{
|
|
// figure out what rectangle we want to crop from the image
|
|
double mins = 0.466666666, maxs = 0.875;
|
|
auto scale = mins + rnd.get_random_double()*(maxs-mins);
|
|
auto size = scale*std::min(img.nr(), img.nc());
|
|
rectangle rect(size, size);
|
|
// randomly shift the box around
|
|
point offset(rnd.get_random_32bit_number()%(img.nc()-rect.width()),
|
|
rnd.get_random_32bit_number()%(img.nr()-rect.height()));
|
|
return move_rect(rect, offset);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
void randomly_crop_image (
|
|
const matrix<rgb_pixel>& img,
|
|
matrix<rgb_pixel>& crop,
|
|
dlib::rand& rnd
|
|
)
|
|
{
|
|
auto rect = make_random_cropping_rect_resnet(img, rnd);
|
|
|
|
// now crop it out as a 227x227 image.
|
|
extract_image_chip(img, chip_details(rect, chip_dims(227,227)), crop);
|
|
|
|
// Also randomly flip the image
|
|
if (rnd.get_random_double() > 0.5)
|
|
crop = fliplr(crop);
|
|
|
|
// And then randomly adjust the colors.
|
|
apply_random_color_offset(crop, rnd);
|
|
}
|
|
|
|
void randomly_crop_images (
|
|
const matrix<rgb_pixel>& img,
|
|
dlib::array<matrix<rgb_pixel>>& crops,
|
|
dlib::rand& rnd,
|
|
long num_crops
|
|
)
|
|
{
|
|
std::vector<chip_details> dets;
|
|
for (long i = 0; i < num_crops; ++i)
|
|
{
|
|
auto rect = make_random_cropping_rect_resnet(img, rnd);
|
|
dets.push_back(chip_details(rect, chip_dims(227,227)));
|
|
}
|
|
|
|
extract_image_chips(img, dets, crops);
|
|
|
|
for (auto&& img : crops)
|
|
{
|
|
// Also randomly flip the image
|
|
if (rnd.get_random_double() > 0.5)
|
|
img = fliplr(img);
|
|
|
|
// And then randomly adjust the colors.
|
|
apply_random_color_offset(img, rnd);
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
struct image_info
|
|
{
|
|
string filename;
|
|
string label;
|
|
unsigned long numeric_label;
|
|
};
|
|
|
|
std::vector<image_info> get_imagenet_train_listing(
|
|
const std::string& images_folder
|
|
)
|
|
{
|
|
std::vector<image_info> results;
|
|
image_info temp;
|
|
temp.numeric_label = 0;
|
|
// We will loop over all the label types in the dataset, each is contained in a subfolder.
|
|
auto subdirs = directory(images_folder).get_dirs();
|
|
// But first, sort the sub directories so the numeric labels will be assigned in sorted order.
|
|
std::sort(subdirs.begin(), subdirs.end());
|
|
for (auto subdir : subdirs)
|
|
{
|
|
// Now get all the images in this label type
|
|
temp.label = subdir.name();
|
|
for (auto image_file : subdir.get_files())
|
|
{
|
|
temp.filename = image_file;
|
|
results.push_back(temp);
|
|
}
|
|
++temp.numeric_label;
|
|
}
|
|
return results;
|
|
}
|
|
|
|
std::vector<image_info> get_imagenet_val_listing(
|
|
const std::string& validation_images_file
|
|
)
|
|
{
|
|
ifstream fin(validation_images_file);
|
|
string label, filename;
|
|
std::vector<image_info> results;
|
|
image_info temp;
|
|
temp.numeric_label = -1;
|
|
string path = get_parent_directory(file(validation_images_file));
|
|
while(fin >> label >> filename)
|
|
{
|
|
temp.filename = path+"/"+filename;
|
|
if (!file_exists(temp.filename))
|
|
{
|
|
cerr << "file doesn't exist! " << temp.filename << endl;
|
|
exit(1);
|
|
}
|
|
if (label != temp.label)
|
|
++temp.numeric_label;
|
|
|
|
temp.label = label;
|
|
results.push_back(temp);
|
|
}
|
|
|
|
return results;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
int main(int argc, char** argv) try
|
|
{
|
|
if (argc != 3)
|
|
{
|
|
cout << "To run this program you need a copy of the imagenet ILSVRC2015 dataset and" << endl;
|
|
cout << "also the file http://dlib.net/files/imagenet2015_validation_images.txt.bz2" << endl;
|
|
cout << endl;
|
|
cout << "With those things, you call this program like this: " << endl;
|
|
cout << "./dnn_imagenet_train_ex /path/to/ILSVRC2015 imagenet2015_validation_images.txt" << endl;
|
|
return 1;
|
|
}
|
|
|
|
cout << "\nSCANNING IMAGENET DATASET\n" << endl;
|
|
|
|
auto listing = get_imagenet_train_listing(string(argv[1])+"/Data/CLS-LOC/train/");
|
|
cout << "images in dataset: " << listing.size() << endl;
|
|
const auto number_of_classes = listing.back().numeric_label+1;
|
|
if (listing.size() == 0 || number_of_classes != 1000)
|
|
{
|
|
cout << "Didn't find the imagenet dataset. " << endl;
|
|
return 1;
|
|
}
|
|
|
|
set_dnn_prefer_smallest_algorithms();
|
|
|
|
|
|
const double initial_learning_rate = 0.1;
|
|
const double weight_decay = 0.0001;
|
|
const double momentum = 0.9;
|
|
|
|
net_type net;
|
|
dnn_trainer<net_type> trainer(net,sgd(weight_decay, momentum));
|
|
trainer.be_verbose();
|
|
trainer.set_learning_rate(initial_learning_rate);
|
|
trainer.set_synchronization_file("imagenet_trainer_state_file.dat", std::chrono::minutes(10));
|
|
// This threshold is probably excessively large. You could likely get good results
|
|
// with a smaller value but if you aren't in a hurry this value will surely work well.
|
|
trainer.set_iterations_without_progress_threshold(20000);
|
|
|
|
std::vector<matrix<rgb_pixel>> samples;
|
|
std::vector<unsigned long> labels;
|
|
|
|
// Start a bunch of threads that read images from disk and pull out random crops. It's
|
|
// important to be sure to feed the GPU fast enough to keep it busy. Using multiple
|
|
// thread for this kind of data preparation helps us do that. Each thread puts the
|
|
// crops into the data queue.
|
|
dlib::pipe<std::pair<image_info,matrix<rgb_pixel>>> data(200);
|
|
auto f = [&data, &listing](time_t seed)
|
|
{
|
|
dlib::rand rnd(time(0)+seed);
|
|
matrix<rgb_pixel> img;
|
|
std::pair<image_info, matrix<rgb_pixel>> temp;
|
|
while(data.is_enabled())
|
|
{
|
|
temp.first = listing[rnd.get_random_32bit_number()%listing.size()];
|
|
load_image(img, temp.first.filename);
|
|
randomly_crop_image(img, temp.second, rnd);
|
|
data.enqueue(temp);
|
|
}
|
|
};
|
|
std::thread data_loader1([f](){ f(1); });
|
|
std::thread data_loader2([f](){ f(2); });
|
|
std::thread data_loader3([f](){ f(3); });
|
|
std::thread data_loader4([f](){ f(4); });
|
|
|
|
// The main training loop. Keep making mini-batches and giving them to the trainer.
|
|
// We will run until the learning rate has dropped by a factor of 1e-3.
|
|
while(trainer.get_learning_rate() >= initial_learning_rate*1e-3)
|
|
{
|
|
samples.clear();
|
|
labels.clear();
|
|
|
|
// make a 160 image mini-batch
|
|
std::pair<image_info, matrix<rgb_pixel>> img;
|
|
while(samples.size() < 160)
|
|
{
|
|
data.dequeue(img);
|
|
|
|
samples.push_back(std::move(img.second));
|
|
labels.push_back(img.first.numeric_label);
|
|
}
|
|
|
|
trainer.train_one_step(samples, labels);
|
|
}
|
|
|
|
// Training done, tell threads to stop and make sure to wait for them to finish before
|
|
// moving on.
|
|
data.disable();
|
|
data_loader1.join();
|
|
data_loader2.join();
|
|
data_loader3.join();
|
|
data_loader4.join();
|
|
|
|
// also wait for threaded processing to stop in the trainer.
|
|
trainer.get_net();
|
|
|
|
net.clean();
|
|
cout << "saving network" << endl;
|
|
serialize("resnet34.dnn") << net;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Now test the network on the imagenet validation dataset. First, make a testing
|
|
// network with softmax as the final layer. We don't have to do this if we just wanted
|
|
// to test the "top1 accuracy" since the normal network outputs the class prediction.
|
|
// But this snet object will make getting the top5 predictions easy as it directly
|
|
// outputs the probability of each class as its final output.
|
|
softmax<anet_type::subnet_type> snet; snet.subnet() = net.subnet();
|
|
|
|
cout << "Testing network on imagenet validation dataset..." << endl;
|
|
int num_right = 0;
|
|
int num_wrong = 0;
|
|
int num_right_top1 = 0;
|
|
int num_wrong_top1 = 0;
|
|
dlib::rand rnd(time(0));
|
|
// loop over all the imagenet validation images
|
|
for (auto l : get_imagenet_val_listing(argv[2]))
|
|
{
|
|
dlib::array<matrix<rgb_pixel>> images;
|
|
matrix<rgb_pixel> img;
|
|
load_image(img, l.filename);
|
|
// Grab 16 random crops from the image. We will run all of them through the
|
|
// network and average the results.
|
|
const int num_crops = 16;
|
|
randomly_crop_images(img, images, rnd, num_crops);
|
|
// p(i) == the probability the image contains object of class i.
|
|
matrix<float,1,1000> p = sum_rows(mat(snet(images.begin(), images.end())))/num_crops;
|
|
|
|
// check top 1 accuracy
|
|
if (index_of_max(p) == l.numeric_label)
|
|
++num_right_top1;
|
|
else
|
|
++num_wrong_top1;
|
|
|
|
// check top 5 accuracy
|
|
bool found_match = false;
|
|
for (int k = 0; k < 5; ++k)
|
|
{
|
|
unsigned long predicted_label = index_of_max(p);
|
|
p(predicted_label) = 0;
|
|
if (predicted_label == l.numeric_label)
|
|
{
|
|
found_match = true;
|
|
break;
|
|
}
|
|
|
|
}
|
|
if (found_match)
|
|
++num_right;
|
|
else
|
|
++num_wrong;
|
|
}
|
|
cout << "val top5 accuracy: " << num_right/(double)(num_right+num_wrong) << endl;
|
|
cout << "val top1 accuracy: " << num_right_top1/(double)(num_right_top1+num_wrong_top1) << endl;
|
|
}
|
|
catch(std::exception& e)
|
|
{
|
|
cout << e.what() << endl;
|
|
}
|
|
|