mirror of https://github.com/davisking/dlib.git
152 lines
4.9 KiB
C++
152 lines
4.9 KiB
C++
|
|
|
|
#include <iostream>
|
|
#include <dlib/dnn.h>
|
|
#include <dlib/data_io.h>
|
|
#include <dlib/image_processing.h>
|
|
#include <dlib/gui_widgets.h>
|
|
|
|
|
|
using namespace std;
|
|
using namespace dlib;
|
|
|
|
|
|
/*
|
|
Training differences with dnn_mmod_ex.cpp
|
|
|
|
A slightly bigger network architecture. Also, to train you must replace the affine layers with bn_con layers.
|
|
|
|
mmod_options options(training_labels, 80*80);
|
|
instead of
|
|
mmod_options options(face_boxes_train, 40*40);
|
|
|
|
trainer.set_iterations_without_progress_threshold(8000);
|
|
instead of
|
|
trainer.set_iterations_without_progress_threshold(300);
|
|
|
|
random cropper was left at its default settings, So we didn't call these functions:
|
|
cropper.set_chip_dims(200, 200);
|
|
cropper.set_min_object_height(0.2);
|
|
|
|
|
|
|
|
// shape predictor was trained with these settings: tree cascade depth=20, tree depth=5, padding=0.2
|
|
*/
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
template <long num_filters, typename SUBNET> using con5d = con<num_filters,5,5,2,2,SUBNET>;
|
|
template <long num_filters, typename SUBNET> using con5 = con<num_filters,5,5,1,1,SUBNET>;
|
|
|
|
template <typename SUBNET> using downsampler = relu<affine<con5d<32, relu<affine<con5d<32, relu<affine<con5d<16,SUBNET>>>>>>>>>;
|
|
template <typename SUBNET> using rcon5 = relu<affine<con5<45,SUBNET>>>;
|
|
|
|
using net_type = loss_mmod<con<1,9,9,1,1,rcon5<rcon5<rcon5<downsampler<input_rgb_image_pyramid<pyramid_down<6>>>>>>>>;
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
|
|
int main(int argc, char** argv) try
|
|
{
|
|
if (argc < 3)
|
|
{
|
|
cout << "Give the path to the examples/faces directory as the argument to this" << endl;
|
|
cout << "program. For example, if you are in the examples folder then execute " << endl;
|
|
cout << "this program by running: " << endl;
|
|
cout << " ./fhog_object_detector_ex faces" << endl;
|
|
cout << endl;
|
|
return 0;
|
|
}
|
|
|
|
|
|
net_type net;
|
|
shape_predictor sp;
|
|
matrix<rgb_alpha_pixel> glasses, mustache;
|
|
deserialize(argv[1]) >> net >> sp >> glasses >> mustache;
|
|
pyramid_up(glasses);
|
|
pyramid_up(mustache);
|
|
|
|
// right eye (59,35), left eye (176,36)
|
|
image_window win1(glasses);
|
|
image_window win2(mustache);
|
|
|
|
image_window win_wireframe, win_hipster;
|
|
for (int i = 2; i < argc; ++i)
|
|
{
|
|
matrix<rgb_pixel> img;
|
|
load_image(img, argv[i]);
|
|
|
|
// Upsampling the image will allow us to find smaller dog faces but will use more
|
|
// computational resources.
|
|
//pyramid_up(img);
|
|
|
|
auto dets = net(img);
|
|
win_wireframe.clear_overlay();
|
|
win_wireframe.set_image(img);
|
|
std::vector<image_window::overlay_line> lines;
|
|
for (auto&& d : dets)
|
|
{
|
|
auto shape = sp(img, d.rect);
|
|
|
|
const rgb_pixel color(0,255,0);
|
|
auto top = shape.part(0);
|
|
auto lear = shape.part(1);
|
|
auto leye = shape.part(2);
|
|
auto nose = shape.part(3);
|
|
auto rear = shape.part(4);
|
|
auto reye = shape.part(5);
|
|
|
|
auto lmustache = 1.3*(leye-reye)/2 + nose;
|
|
auto rmustache = 1.3*(reye-leye)/2 + nose;
|
|
|
|
std::vector<point> from = {2*point(176,36), 2*point(59,35)}, to = {leye, reye};
|
|
auto tform = find_similarity_transform(from, to);
|
|
for (long r = 0; r < glasses.nr(); ++r)
|
|
{
|
|
for (long c = 0; c < glasses.nc(); ++c)
|
|
{
|
|
point p = tform(point(c,r));
|
|
if (get_rect(img).contains(p))
|
|
assign_pixel(img(p.y(),p.x()), glasses(r,c));
|
|
}
|
|
}
|
|
auto mrect = get_rect(mustache);
|
|
from = {mrect.tl_corner(), mrect.tr_corner()};
|
|
to = {rmustache, lmustache};
|
|
tform = find_similarity_transform(from, to);
|
|
for (long r = 0; r < mustache.nr(); ++r)
|
|
{
|
|
for (long c = 0; c < mustache.nc(); ++c)
|
|
{
|
|
point p = tform(point(c,r));
|
|
if (get_rect(img).contains(p))
|
|
assign_pixel(img(p.y(),p.x()), mustache(r,c));
|
|
}
|
|
}
|
|
|
|
|
|
lines.push_back(image_window::overlay_line(leye, nose, color));
|
|
lines.push_back(image_window::overlay_line(nose, reye, color));
|
|
lines.push_back(image_window::overlay_line(reye, leye, color));
|
|
lines.push_back(image_window::overlay_line(reye, rear, color));
|
|
lines.push_back(image_window::overlay_line(rear, top, color));
|
|
lines.push_back(image_window::overlay_line(top, lear, color));
|
|
lines.push_back(image_window::overlay_line(lear, leye, color));
|
|
}
|
|
|
|
win_wireframe.add_overlay(lines);
|
|
win_hipster.set_image(img);
|
|
|
|
cin.get();
|
|
}
|
|
}
|
|
catch(std::exception& e)
|
|
{
|
|
cout << e.what() << endl;
|
|
}
|
|
|
|
|
|
|
|
|