mirror of https://github.com/davisking/dlib.git
117 lines
3.9 KiB
C++
117 lines
3.9 KiB
C++
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
|
/*
|
|
|
|
This is an example illustrating the use of the dlib tools for
|
|
detecting objects in images. In this example we will create
|
|
three simple images, each containing some white squares. We
|
|
will then use the sliding window classifier tools to learn to
|
|
detect these squares.
|
|
|
|
*/
|
|
|
|
#include <dlib/time_this.h>
|
|
|
|
#include <dlib/image_processing/frontal_face_detector.h>
|
|
|
|
#include <dlib/svm_threaded.h>
|
|
#include <dlib/gui_widgets.h>
|
|
#include <dlib/array.h>
|
|
#include <dlib/array2d.h>
|
|
#include <dlib/image_keypoint.h>
|
|
#include <dlib/image_processing.h>
|
|
#include <dlib/data_io.h>
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
|
|
|
|
using namespace std;
|
|
using namespace dlib;
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
int main()
|
|
{
|
|
/*
|
|
NOTES
|
|
- explain the concepts of ignore boxes
|
|
*/
|
|
|
|
try
|
|
{
|
|
dlib::array<array2d<unsigned char> > images, images_test;
|
|
std::vector<std::vector<rectangle> > object_locations, object_locations_test;
|
|
|
|
load_image_dataset(images, object_locations, "../faces/training.xml");
|
|
upsample_image_dataset<pyramid_down<2> >(images, object_locations);
|
|
|
|
load_image_dataset(images_test, object_locations_test, "../faces/testing.xml");
|
|
upsample_image_dataset<pyramid_down<2> >(images_test, object_locations_test);
|
|
|
|
|
|
add_image_left_right_flips(images, object_locations);
|
|
|
|
cout << "num training images: " << images.size() << endl;
|
|
cout << "num testing images: " << images_test.size() << endl;
|
|
|
|
|
|
typedef scan_fhog_pyramid<pyramid_down<6> > image_scanner_type;
|
|
image_scanner_type scanner;
|
|
|
|
scanner.set_detection_window_size(80, 80); // faces
|
|
//scanner.set_nuclear_norm_regularization_strength(1.0);
|
|
|
|
structural_object_detection_trainer<image_scanner_type> trainer(scanner);
|
|
trainer.set_num_threads(6); // Set this to the number of processing cores on your machine.
|
|
trainer.set_c(1);
|
|
//trainer.set_c(10);
|
|
trainer.be_verbose();
|
|
trainer.set_epsilon(0.01);
|
|
|
|
// TODO, talk about this option
|
|
//remove_unobtainable_rectangles(trainer, images, object_locations);
|
|
|
|
object_detector<image_scanner_type> detector = trainer.train(images, object_locations);
|
|
cout << "num filters 0.0: "<< num_separable_filters(detector) << endl;
|
|
|
|
cout << "training results 0.0: " << test_object_detection_function(detector, images, object_locations) << endl;
|
|
cout << "testing results 0.0: " << test_object_detection_function(detector, images_test, object_locations_test) << endl;
|
|
|
|
detector = threshold_filter_singular_values(detector,0.01);
|
|
cout << "num filters 0.01: "<< num_separable_filters(detector) << endl;
|
|
cout << "testing results 0.01: " << test_object_detection_function(detector, images_test, object_locations_test) << endl;
|
|
|
|
detector = threshold_filter_singular_values(detector,0.1);
|
|
cout << "num filters 0.1: "<< num_separable_filters(detector) << endl;
|
|
cout << "testing results 0.1: " << test_object_detection_function(detector, images_test, object_locations_test) << endl;
|
|
|
|
|
|
|
|
image_window win, hogwin(draw_fhog(detector));
|
|
for (unsigned long i = 0; i < images_test.size(); ++i)
|
|
{
|
|
std::vector<rectangle> dets;
|
|
TIME_THIS(
|
|
dets = detector(images_test[i]);
|
|
);
|
|
win.clear_overlay();
|
|
win.set_image(images_test[i]);
|
|
win.add_overlay(dets, rgb_pixel(255,0,0));
|
|
cin.get();
|
|
}
|
|
|
|
|
|
ofstream fout("face_detector.svm", ios::binary);
|
|
serialize(detector, fout);
|
|
|
|
}
|
|
catch (exception& e)
|
|
{
|
|
cout << "\nexception thrown!" << endl;
|
|
cout << e.what() << endl;
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|