dlib/examples/integrate_function_adapt_si...

90 lines
2.8 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This example demonstrates the usage of the numerical quadrature function
integrate_function_adapt_simp(). This function takes as input a single variable
function, the endpoints of a domain over which the function will be integrated, and a
tolerance parameter. It outputs an approximation of the integral of this function over
the specified domain. The algorithm is based on the adaptive Simpson method outlined in:
Numerical Integration method based on the adaptive Simpson method in
Gander, W. and W. Gautschi, "Adaptive Quadrature Revisited,"
BIT, Vol. 40, 2000, pp. 84-101
*/
#include <iostream>
#include <dlib/matrix.h>
#include <dlib/numeric_constants.h>
#include <dlib/numerical_integration.h>
using namespace std;
using namespace dlib;
// Here we the set of functions that we wish to integrate and comment in the domain of
// integration.
// x in [0,1]
double gg1(double x)
{
return pow(e,x);
}
// x in [0,1]
double gg2(double x)
{
return x*x;
}
// x in [0, pi]
double gg3(double x)
{
return 1/(x*x + cos(x)*cos(x));
}
// x in [-pi, pi]
double gg4(double x)
{
return sin(x);
}
// x in [0,2]
double gg5(double x)
{
return 1/(1 + x*x);
}
int main()
{
// We first define a tolerance parameter. Roughly speaking, a lower tolerance will
// result in a more accurate approximation of the true integral. However, there are
// instances where too small of a tolerance may yield a less accurate approximation
// than a larger tolerance. We recommend taking the tolerance to be in the
// [1e-10, 1e-8] region.
double tol = 1e-10;
// Here we compute the integrals of the five functions defined above using the same
// tolerance level for each.
double m1 = integrate_function_adapt_simp(&gg1, 0.0, 1.0, tol);
double m2 = integrate_function_adapt_simp(&gg2, 0.0, 1.0, tol);
double m3 = integrate_function_adapt_simp(&gg3, 0.0, pi, tol);
double m4 = integrate_function_adapt_simp(&gg4, -pi, pi, tol);
double m5 = integrate_function_adapt_simp(&gg5, 0.0, 2.0, tol);
// We finally print out the values of each of the approximated integrals to ten
// significant digits.
cout << "\nThe integral of exp(x) for x in [0,1] is " << std::setprecision(10) << m1 << endl;
cout << "The integral of x^2 for in [0,1] is " << std::setprecision(10) << m2 << endl;
cout << "The integral of 1/(x^2 + cos(x)^2) for in [0,pi] is " << std::setprecision(10) << m3 << endl;
cout << "The integral of sin(x) for in [-pi,pi] is " << std::setprecision(10) << m4 << endl;
cout << "The integral of 1/(1+x^2) for in [0,2] is " << std::setprecision(10) << m5 << endl;
cout << endl;
return 0;
}