mirror of https://github.com/davisking/dlib.git
105 lines
3.9 KiB
C++
105 lines
3.9 KiB
C++
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
|
/*
|
|
|
|
This is an example illustrating the use of the GUI API as well as some
|
|
aspects of image manipulation from the dlib C++ Library.
|
|
|
|
|
|
This is a pretty simple example. It takes a BMP file on the command line
|
|
and opens it up, runs a simple edge detection algorithm on it, and
|
|
displays the results on the screen.
|
|
*/
|
|
|
|
|
|
|
|
#include <dlib/gui_widgets.h>
|
|
#include <dlib/image_io.h>
|
|
#include <dlib/image_transforms.h>
|
|
#include <fstream>
|
|
|
|
|
|
using namespace std;
|
|
using namespace dlib;
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
try
|
|
{
|
|
// make sure the user entered an argument to this program
|
|
if (argc != 2)
|
|
{
|
|
cout << "error, you have to enter a BMP file as an argument to this program" << endl;
|
|
return 1;
|
|
}
|
|
|
|
// Here we declare an image object that can store rgb_pixels. Note that in
|
|
// dlib there is no explicit image object, just a 2D array and
|
|
// various pixel types.
|
|
array2d<rgb_pixel> img;
|
|
|
|
// Now load the image file into our image. If something is wrong then
|
|
// load_image() will throw an exception. Also, if you linked with libpng
|
|
// and libjpeg then load_image() can load PNG and JPEG files in addition
|
|
// to BMP files.
|
|
load_image(img, argv[1]);
|
|
|
|
|
|
// Now let's use some image functions. First let's blur the image a little.
|
|
array2d<unsigned char> blurred_img;
|
|
gaussian_blur(img, blurred_img);
|
|
|
|
// Now find the horizontal and vertical gradient images.
|
|
array2d<short> horz_gradient, vert_gradient;
|
|
array2d<unsigned char> edge_image;
|
|
sobel_edge_detector(blurred_img, horz_gradient, vert_gradient);
|
|
|
|
// now we do the non-maximum edge suppression step so that our edges are nice and thin
|
|
suppress_non_maximum_edges(horz_gradient, vert_gradient, edge_image);
|
|
|
|
// Now we would like to see what our images look like. So let's use a
|
|
// window to display them on the screen. (Note that you can zoom into
|
|
// the window by holding CTRL and scrolling the mouse wheel)
|
|
image_window my_window(edge_image, "Normal Edge Image");
|
|
|
|
// We can also easily display the edge_image as a heatmap or using the jet color
|
|
// scheme like so.
|
|
image_window win_hot(heatmap(edge_image));
|
|
image_window win_jet(jet(edge_image));
|
|
|
|
// also make a window to display the original image
|
|
image_window my_window2(img, "Original Image");
|
|
|
|
// Sometimes you want to get input from the user about which pixels are important
|
|
// for some task. You can do this easily by trapping user clicks as shown below.
|
|
// This loop executes every time the user double clicks on some image pixel and it
|
|
// will terminate once the user closes the window.
|
|
point p;
|
|
while (my_window.get_next_double_click(p))
|
|
{
|
|
cout << "User double clicked on pixel: " << p << endl;
|
|
cout << "edge pixel value at this location is: " << (int)edge_image[p.y()][p.x()] << endl;
|
|
}
|
|
|
|
// wait until the user closes the windows before we let the program
|
|
// terminate.
|
|
win_hot.wait_until_closed();
|
|
my_window2.wait_until_closed();
|
|
|
|
|
|
// Finally, note that you can access the elements of an image using the normal [row][column]
|
|
// operator like so:
|
|
cout << horz_gradient[0][3] << endl;
|
|
cout << "number of rows in image: " << horz_gradient.nr() << endl;
|
|
cout << "number of columns in image: " << horz_gradient.nc() << endl;
|
|
}
|
|
catch (exception& e)
|
|
{
|
|
cout << "exception thrown: " << e.what() << endl;
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|