#!/usr/bin/python # The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt # # This example shows how to use dlib's face recognition tool for image alignment. # # COMPILING/INSTALLING THE DLIB PYTHON INTERFACE # You can install dlib using the command: # pip install dlib # # Alternatively, if you want to compile dlib yourself then go into the dlib # root folder and run: # python setup.py install # or # python setup.py install --yes USE_AVX_INSTRUCTIONS # if you have a CPU that supports AVX instructions, since this makes some # things run faster. This code will also use CUDA if you have CUDA and cuDNN # installed. # # Compiling dlib should work on any operating system so long as you have # CMake and boost-python installed. On Ubuntu, this can be done easily by # running the command: # sudo apt-get install libboost-python-dev cmake # # Also note that this example requires OpenCV and Numpy which can be installed # via the command: # pip install opencv-python numpy # Or downloaded from http://opencv.org/releases.html import sys import os import dlib import glob import cv2 import numpy as np if len(sys.argv) != 4: print( "Call this program like this:\n" " ./face_alignment.py shape_predictor_5_face_landmarks.dat dlib_face_recognition_resnet_model_v1.dat ../examples/faces/bald_guys.jpg\n" "You can download a trained facial shape predictor and recognition model from:\n" " http://dlib.net/files/shape_predictor_5_face_landmarks.dat.bz2\n" " http://dlib.net/files/dlib_face_recognition_resnet_model_v1.dat.bz2") exit() predictor_path = sys.argv[1] face_rec_model_path = sys.argv[2] face_file_path = sys.argv[3] # Load all the models we need: a detector to find the faces, a shape predictor # to find face landmarks so we can precisely localize the face, and finally the # face recognition model. detector = dlib.get_frontal_face_detector() sp = dlib.shape_predictor(predictor_path) facerec = dlib.face_recognition_model_v1(face_rec_model_path) # Load the image using OpenCV bgr_img = cv2.imread(face_file_path) if bgr_img is None: print("Sorry, we could not load '{}' as an image".format(face_file_path)) exit() # Convert to RGB since dlib uses RGB images img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB) # Ask the detector to find the bounding boxes of each face. The 1 in the # second argument indicates that we should upsample the image 1 time. This # will make everything bigger and allow us to detect more faces. dets = detector(img, 1) num_faces = len(dets) if num_faces == 0: print("Sorry, there were no faces found in '{}'".format(face_file_path)) exit() # The full object detection object faces = dlib.full_object_detections() for detection in dets: faces.append(sp(img, detection)) # Get the aligned face images # Optionally: # images = dlib.get_face_chips(img, faces, size=160, padding=0.25) images = dlib.get_face_chips(img, faces, size=320) for image in images: cv_rgb_image = np.array(image).astype(np.uint8) cv_bgr_img = cv2.cvtColor(cv_rgb_image, cv2.COLOR_RGB2BGR) cv2.imshow('image',cv_bgr_img) cv2.waitKey(0) # It is also possible to get a single chip image = dlib.get_face_chip(img, faces[0]) cv_rgb_image = np.array(image).astype(np.uint8) cv_bgr_img = cv2.cvtColor(cv_rgb_image, cv2.COLOR_RGB2BGR) cv2.imshow('image',cv_bgr_img) cv2.waitKey(0) cv2.destroyAllWindows()