Added an example showing how to classify imagenet images.

This commit is contained in:
Davis King 2016-06-22 22:26:48 -04:00
parent d8fe4355fe
commit f453b03f39
2 changed files with 142 additions and 0 deletions

View File

@ -34,6 +34,7 @@ if (COMPILER_CAN_DO_CPP_11)
add_example(dnn_mnist_ex)
add_example(dnn_mnist_advanced_ex)
add_example(dnn_inception_ex)
add_example(dnn_imagenet_ex)
endif()
#here we apply our macros

View File

@ -0,0 +1,141 @@
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This example shows how to classify an image into one of the 1000 imagenet clategories
using the deep learning tools from the dlib C++ Library. We will use the pretrained
ResNet34 model available on the dlib website.
These tools will use CUDA and cuDNN to drastically accelerate network
training and testing. CMake should automatically find them if they are
installed and configure things appropriately. If not, the program will
still run but will be much slower to execute.
*/
#include <dlib/dnn.h>
#include <iostream>
#include <dlib/data_io.h>
#include <dlib/gui_widgets.h>
#include <dlib/image_transforms.h>
using namespace std;
using namespace dlib;
// ----------------------------------------------------------------------------------------
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;
template <int N, template <typename> class BN, int stride, typename SUBNET>
using block = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;
template <int N, typename SUBNET> using ares = relu<residual<block,N,affine,SUBNET>>;
template <int N, typename SUBNET> using ares_down = relu<residual_down<block,N,affine,SUBNET>>;
typedef loss_multiclass_log<fc<1000,avg_pool_everything<
ares<512,ares<512,ares_down<512,
ares<256,ares<256,ares<256,ares<256,ares<256,ares_down<256,
ares<128,ares<128,ares<128,ares_down<128,
ares<64,ares<64,ares<64,
max_pool<3,3,2,2,relu<affine<con<64,7,7,2,2,
input_rgb_image_sized<227>
>>>>>>>>>>>>>>>>>>>>>>> anet_type;
// ----------------------------------------------------------------------------------------
rectangle make_random_cropping_rect_resnet(
const matrix<rgb_pixel>& img,
dlib::rand& rnd
)
{
// figure out what rectangle we want to crop from the image
double mins = 0.466666666, maxs = 0.875;
auto scale = mins + rnd.get_random_double()*(maxs-mins);
auto size = scale*std::min(img.nr(), img.nc());
rectangle rect(size, size);
// randomly shift the box around
point offset(rnd.get_random_32bit_number()%(img.nc()-rect.width()),
rnd.get_random_32bit_number()%(img.nr()-rect.height()));
return move_rect(rect, offset);
}
// ----------------------------------------------------------------------------------------
void randomly_crop_images (
const matrix<rgb_pixel>& img,
dlib::array<matrix<rgb_pixel>>& crops,
dlib::rand& rnd,
long num_crops
)
{
std::vector<chip_details> dets;
for (long i = 0; i < num_crops; ++i)
{
auto rect = make_random_cropping_rect_resnet(img, rnd);
dets.push_back(chip_details(rect, chip_dims(227,227)));
}
extract_image_chips(img, dets, crops);
for (auto&& img : crops)
{
// Also randomly flip the image
if (rnd.get_random_double() > 0.5)
img = fliplr(img);
// And then randomly adjust the colors.
apply_random_color_offset(img, rnd);
}
}
// ----------------------------------------------------------------------------------------
int main(int argc, char** argv) try
{
std::vector<string> labels;
anet_type net;
// get this file from http://dlib.net/files/resnet34_1000_imagenet_classifier.dnn.bz2
deserialize("resnet34_1000_imagenet_classifier.dnn") >> net >> labels;
softmax<anet_type::subnet_type> snet;
snet.subnet() = net.subnet();
dlib::array<matrix<rgb_pixel>> images;
matrix<rgb_pixel> img, crop;
dlib::rand rnd;
image_window win;
// read images from the command prompt and print the top 5 best labels.
for (int i = 1; i < argc; ++i)
{
load_image(img, argv[i]);
const int num_crops = 16;
randomly_crop_images(img, images, rnd, num_crops);
matrix<float,1,1000> p = sum_rows(mat(snet(images.begin(), images.end())))/num_crops;
win.set_image(img);
for (int k = 0; k < 5; ++k)
{
unsigned long predicted_label = index_of_max(p);
cout << p(predicted_label) << ": " << labels[predicted_label] << endl;
p(predicted_label) = 0;
}
cin.get();
}
}
catch(std::exception& e)
{
cout << e.what() << endl;
}