mirror of https://github.com/davisking/dlib.git
Added an example showing how to classify imagenet images.
This commit is contained in:
parent
d8fe4355fe
commit
f453b03f39
|
@ -34,6 +34,7 @@ if (COMPILER_CAN_DO_CPP_11)
|
|||
add_example(dnn_mnist_ex)
|
||||
add_example(dnn_mnist_advanced_ex)
|
||||
add_example(dnn_inception_ex)
|
||||
add_example(dnn_imagenet_ex)
|
||||
endif()
|
||||
|
||||
#here we apply our macros
|
||||
|
|
|
@ -0,0 +1,141 @@
|
|||
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
||||
/*
|
||||
This example shows how to classify an image into one of the 1000 imagenet clategories
|
||||
using the deep learning tools from the dlib C++ Library. We will use the pretrained
|
||||
ResNet34 model available on the dlib website.
|
||||
|
||||
|
||||
These tools will use CUDA and cuDNN to drastically accelerate network
|
||||
training and testing. CMake should automatically find them if they are
|
||||
installed and configure things appropriately. If not, the program will
|
||||
still run but will be much slower to execute.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#include <dlib/dnn.h>
|
||||
#include <iostream>
|
||||
#include <dlib/data_io.h>
|
||||
#include <dlib/gui_widgets.h>
|
||||
#include <dlib/image_transforms.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace dlib;
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
|
||||
using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;
|
||||
|
||||
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
|
||||
using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;
|
||||
|
||||
template <int N, template <typename> class BN, int stride, typename SUBNET>
|
||||
using block = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;
|
||||
|
||||
template <int N, typename SUBNET> using ares = relu<residual<block,N,affine,SUBNET>>;
|
||||
template <int N, typename SUBNET> using ares_down = relu<residual_down<block,N,affine,SUBNET>>;
|
||||
|
||||
|
||||
typedef loss_multiclass_log<fc<1000,avg_pool_everything<
|
||||
ares<512,ares<512,ares_down<512,
|
||||
ares<256,ares<256,ares<256,ares<256,ares<256,ares_down<256,
|
||||
ares<128,ares<128,ares<128,ares_down<128,
|
||||
ares<64,ares<64,ares<64,
|
||||
max_pool<3,3,2,2,relu<affine<con<64,7,7,2,2,
|
||||
input_rgb_image_sized<227>
|
||||
>>>>>>>>>>>>>>>>>>>>>>> anet_type;
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
rectangle make_random_cropping_rect_resnet(
|
||||
const matrix<rgb_pixel>& img,
|
||||
dlib::rand& rnd
|
||||
)
|
||||
{
|
||||
// figure out what rectangle we want to crop from the image
|
||||
double mins = 0.466666666, maxs = 0.875;
|
||||
auto scale = mins + rnd.get_random_double()*(maxs-mins);
|
||||
auto size = scale*std::min(img.nr(), img.nc());
|
||||
rectangle rect(size, size);
|
||||
// randomly shift the box around
|
||||
point offset(rnd.get_random_32bit_number()%(img.nc()-rect.width()),
|
||||
rnd.get_random_32bit_number()%(img.nr()-rect.height()));
|
||||
return move_rect(rect, offset);
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
void randomly_crop_images (
|
||||
const matrix<rgb_pixel>& img,
|
||||
dlib::array<matrix<rgb_pixel>>& crops,
|
||||
dlib::rand& rnd,
|
||||
long num_crops
|
||||
)
|
||||
{
|
||||
std::vector<chip_details> dets;
|
||||
for (long i = 0; i < num_crops; ++i)
|
||||
{
|
||||
auto rect = make_random_cropping_rect_resnet(img, rnd);
|
||||
dets.push_back(chip_details(rect, chip_dims(227,227)));
|
||||
}
|
||||
|
||||
extract_image_chips(img, dets, crops);
|
||||
|
||||
for (auto&& img : crops)
|
||||
{
|
||||
// Also randomly flip the image
|
||||
if (rnd.get_random_double() > 0.5)
|
||||
img = fliplr(img);
|
||||
|
||||
// And then randomly adjust the colors.
|
||||
apply_random_color_offset(img, rnd);
|
||||
}
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
int main(int argc, char** argv) try
|
||||
{
|
||||
std::vector<string> labels;
|
||||
anet_type net;
|
||||
// get this file from http://dlib.net/files/resnet34_1000_imagenet_classifier.dnn.bz2
|
||||
deserialize("resnet34_1000_imagenet_classifier.dnn") >> net >> labels;
|
||||
|
||||
|
||||
softmax<anet_type::subnet_type> snet;
|
||||
snet.subnet() = net.subnet();
|
||||
|
||||
dlib::array<matrix<rgb_pixel>> images;
|
||||
matrix<rgb_pixel> img, crop;
|
||||
|
||||
dlib::rand rnd;
|
||||
image_window win;
|
||||
|
||||
// read images from the command prompt and print the top 5 best labels.
|
||||
for (int i = 1; i < argc; ++i)
|
||||
{
|
||||
load_image(img, argv[i]);
|
||||
const int num_crops = 16;
|
||||
randomly_crop_images(img, images, rnd, num_crops);
|
||||
|
||||
matrix<float,1,1000> p = sum_rows(mat(snet(images.begin(), images.end())))/num_crops;
|
||||
|
||||
win.set_image(img);
|
||||
for (int k = 0; k < 5; ++k)
|
||||
{
|
||||
unsigned long predicted_label = index_of_max(p);
|
||||
cout << p(predicted_label) << ": " << labels[predicted_label] << endl;
|
||||
p(predicted_label) = 0;
|
||||
}
|
||||
|
||||
cin.get();
|
||||
}
|
||||
|
||||
}
|
||||
catch(std::exception& e)
|
||||
{
|
||||
cout << e.what() << endl;
|
||||
}
|
||||
|
Loading…
Reference in New Issue