updated docs

This commit is contained in:
Davis King 2015-10-28 08:39:22 -04:00
parent d4f5e24587
commit eacfe67b2d
3 changed files with 118 additions and 115 deletions

View File

@ -9,17 +9,17 @@
<p>
Dlib is a general purpose cross-platform C++ library designed using contract programming
and modern C++ techniques.
Dlib is a modern C++ toolkit containing machine learning algorithms and tools
for creating complex software in C++ to solve real world problems.
It is open source software and licensed
under the <a href="license.html">Boost Software License</a>.
The <a href="intro.html">introduction</a> contains everything you need to know to get
started using the library. However, if you have any questions, comments, or complaints feel free to
<a href='mailto:davis@dlib.net'>email me</a><web> or post in the
sourceforge <a href='http://sourceforge.net/p/dclib/discussion'>Forums</a></web>.
started using the library. However, if after consulting the documentation, you have any questions, comments,
or complaints feel free to post in the
<a href='http://sourceforge.net/p/dclib/discussion'>forums</a>.
</p>
@ -63,6 +63,96 @@
abstraction layers or is pure ISO standard C++. </li>
</ul>
</li>
<li><b>Machine Learning Algorithms</b>
<ul>
<li>Conventional SMO based Support Vector Machines for <a href="ml.html#svm_nu_trainer">classification</a>
and <a href="ml.html#svr_trainer">regression</a> </li>
<li>Reduced-rank methods for large-scale <a href="ml.html#svm_c_ekm_trainer">classification</a>
and <a href="ml.html#krr_trainer">regression</a></li>
<li>Relevance vector machines for <a href="ml.html#rvm_trainer">classification</a>
and <a href="ml.html#rvm_regression_trainer">regression</a> </li>
<li>General purpose <a href="ml.html#one_vs_one_trainer">multiclass classification</a> tools</li>
<li>A <a href="ml.html#svm_multiclass_linear_trainer">Multiclass SVM</a></li>
<li>A tool for solving the optimization problem associated with
<a href="ml.html#structural_svm_problem">structural support vector machines</a>. </li>
<li>Structural SVM tools for <a href="ml.html#structural_sequence_labeling_trainer">sequence labeling</a> </li>
<li>Structural SVM tools for solving <a href="ml.html#structural_assignment_trainer">assignment problems</a> </li>
<li>Structural SVM tools for <a href="ml.html#structural_object_detection_trainer">object detection</a> in images </li>
<li>Structural SVM tools for <a href="ml.html#structural_graph_labeling_trainer">labeling nodes</a> in graphs </li>
<li>A large-scale <a href="ml.html#svm_rank_trainer">SVM-Rank</a> implementation</li>
<li>An online <a href="ml.html#krls">kernel RLS regression</a> algorithm</li>
<li>An online <a href="ml.html#svm_pegasos">SVM classification</a> algorithm</li>
<li><a href="ml.html#vector_normalizer_frobmetric">Semidefinite Metric Learning</a></li>
<li>An online kernelized <a href="ml.html#kcentroid">centroid estimator</a>/novelty detector and
offline support vector <a href="ml.html#svm_one_class_trainer">one-class classification</a></li>
<li>Clustering algorithms: <a href="ml.html#find_clusters_using_kmeans">linear</a>
or <a href="ml.html#kkmeans">kernel k-means</a>,
<a href="ml.html#chinese_whispers">Chinese Whispers</a>, and
<a href="ml.html#newman_cluster">Newman clustering</a>. </li>
<li><a href="ml.html#rbf_network_trainer">Radial Basis Function Networks</a></li>
<li><a href="ml.html#mlp">Multi layer perceptrons</a> </li>
</ul>
</li>
<li><b>Numerical Algorithms</b>
<ul>
<li>A fast <a href="linear_algebra.html#matrix">matrix</a> object implemented using the expression
templates technique and capable of using BLAS and LAPACK libraries when available.</li>
<li>Numerous linear algebra and mathematical operations are defined for the matrix object such as the
<a href="dlib/matrix/matrix_la_abstract.h.html#svd">singular value decomposition</a>,
<a href="dlib/matrix/matrix_utilities_abstract.h.html#trans">transpose</a>,
<a href="dlib/matrix/matrix_math_functions_abstract.h.html#sin">trig functions</a>, etc.</li>
<li>General purpose unconstrained non-linear optimization algorithms using the
<a href="optimization.html#cg_search_strategy">conjugate gradient</a>,
<a href="optimization.html#bfgs_search_strategy">BFGS</a>, and
<a href="optimization.html#lbfgs_search_strategy">L-BFGS</a>
techniques</li>
<li> <a href="optimization.html#solve_least_squares_lm">Levenberg-Marquardt</a> for solving non-linear
least squares problems </li>
<li>Box-constrained derivative-free optimization via the
<a href="optimization.html#find_min_bobyqa">BOBYQA</a> algorithm</li>
<li>An implementation of the <a href="optimization.html#oca">Optimized Cutting Plane Algorithm</a></li>
<li><preserve_space><a href="optimization.html#solve_qp_using_smo">Several</a>
<a href="optimization.html#solve_qp2_using_smo">quadratic</a>
<a href="optimization.html#solve_qp3_using_smo">program</a>
<a href="optimization.html#solve_qp4_using_smo">solvers</a></preserve_space> </li>
<li>Combinatorial optimization tools for solving
<a href="optimization.html#max_cost_assignment">optimal assignment</a> and
<a href="optimization.html#min_cut">min cut/max flow</a> problems as well as
the <a href="optimization.html#find_max_parse_cky">CKY algorithm</a> for finding the most probable parse tree</li>
<li>A <a href="algorithms.html#bigint">big integer</a> object</li>
<li>A <a href="algorithms.html#rand">random number</a> object</li>
</ul>
</li>
<li><b>Graphical Model Inference Algorithms</b>
<ul>
<li><a href="bayes.html#bayesian_network_join_tree">Join tree</a> algorithm for exact inference in
a Bayesian network.</li>
<li><a href="bayes.html#bayesian_network_gibbs_sampler">Gibbs sampler</a> markov chain monte
carlo algorithm for approximate inference in a Bayesian network.</li>
<li>Routines for performing MAP inference in
<a href="optimization.html#find_max_factor_graph_viterbi">chain-structured</a>,
<a href="optimization.html#find_max_factor_graph_potts">Potts</a>, or
<a href="optimization.html#find_max_factor_graph_nmplp">general</a> factor graphs.</li>
</ul>
</li>
<li><b>Image Processing</b>
<ul>
<li>Routines for <a href="imaging.html#load_image">reading</a> and
<a href="imaging.html#save_bmp">writing</a> common image formats. </li>
<li>Automatic color space conversion between various pixel types</li>
<li>Common image operations such as edge finding and morphological operations</li>
<li>Implementations of the <a href="imaging.html#get_surf_points">SURF</a>,
<a href="imaging.html#hog_image">HOG</a>, and <a href="imaging.html#extract_fhog_features">FHOG</a>
feature extraction algorithms.</li>
<li>Tools for <a href="imaging.html#object_detector">detecting objects</a> in images including
<a href="imaging.html#get_frontal_face_detector">frontal face detection</a> and
<a href="imaging.html#shape_predictor">object pose estimation</a>.</li>
</ul>
</li>
<li><b>Threading</b>
<ul>
<li>The library provides a portable and simple <a href="api.html#threads">threading API</a></li>
@ -98,96 +188,6 @@
</li>
<li><b>Numerical Algorithms</b>
<ul>
<li>A fast <a href="linear_algebra.html#matrix">matrix</a> object implemented using the expression
templates technique and capable of using BLAS and LAPACK libraries when available.</li>
<li>Numerous linear algebra and mathematical operations are defined for the matrix object such as the
<a href="dlib/matrix/matrix_la_abstract.h.html#svd">singular value decomposition</a>,
<a href="dlib/matrix/matrix_utilities_abstract.h.html#trans">transpose</a>,
<a href="dlib/matrix/matrix_math_functions_abstract.h.html#sin">trig functions</a>, etc.</li>
<li>General purpose unconstrained non-linear optimization algorithms using the
<a href="optimization.html#cg_search_strategy">conjugate gradient</a>,
<a href="optimization.html#bfgs_search_strategy">BFGS</a>, and
<a href="optimization.html#lbfgs_search_strategy">L-BFGS</a>
techniques</li>
<li> <a href="optimization.html#solve_least_squares_lm">Levenberg-Marquardt</a> for solving non-linear
least squares problems </li>
<li>Box-constrained derivative-free optimization via the
<a href="optimization.html#find_min_bobyqa">BOBYQA</a> algorithm</li>
<li>An implementation of the <a href="optimization.html#oca">Optimized Cutting Plane Algorithm</a></li>
<li><preserve_space><a href="optimization.html#solve_qp_using_smo">Several</a>
<a href="optimization.html#solve_qp2_using_smo">quadratic</a>
<a href="optimization.html#solve_qp3_using_smo">program</a>
<a href="optimization.html#solve_qp4_using_smo">solvers</a></preserve_space> </li>
<li>Combinatorial optimization tools for solving
<a href="optimization.html#max_cost_assignment">optimal assignment</a> and
<a href="optimization.html#min_cut">min cut/max flow</a> problems as well as
the <a href="optimization.html#find_max_parse_cky">CKY algorithm</a> for finding the most probable parse tree</li>
<li>A <a href="algorithms.html#bigint">big integer</a> object</li>
<li>A <a href="algorithms.html#rand">random number</a> object</li>
</ul>
</li>
<li><b>Machine Learning Algorithms</b>
<ul>
<li>Conventional SMO based Support Vector Machines for <a href="ml.html#svm_nu_trainer">classification</a>
and <a href="ml.html#svr_trainer">regression</a> </li>
<li>Reduced-rank methods for large-scale <a href="ml.html#svm_c_ekm_trainer">classification</a>
and <a href="ml.html#krr_trainer">regression</a></li>
<li>Relevance vector machines for <a href="ml.html#rvm_trainer">classification</a>
and <a href="ml.html#rvm_regression_trainer">regression</a> </li>
<li>General purpose <a href="ml.html#one_vs_one_trainer">multiclass classification</a> tools</li>
<li>A <a href="ml.html#svm_multiclass_linear_trainer">Multiclass SVM</a></li>
<li>A tool for solving the optimization problem associated with
<a href="ml.html#structural_svm_problem">structural support vector machines</a>. </li>
<li>Structural SVM tools for <a href="ml.html#structural_sequence_labeling_trainer">sequence labeling</a> </li>
<li>Structural SVM tools for solving <a href="ml.html#structural_assignment_trainer">assignment problems</a> </li>
<li>Structural SVM tools for <a href="ml.html#structural_object_detection_trainer">object detection</a> in images </li>
<li>Structural SVM tools for <a href="ml.html#structural_graph_labeling_trainer">labeling nodes</a> in graphs </li>
<li>A large-scale <a href="ml.html#svm_rank_trainer">SVM-Rank</a> implementation</li>
<li>An online <a href="ml.html#krls">kernel RLS regression</a> algorithm</li>
<li>An online <a href="ml.html#svm_pegasos">SVM classification</a> algorithm</li>
<li><a href="ml.html#vector_normalizer_frobmetric">Semidefinite Metric Learning</a></li>
<li>An online kernelized <a href="ml.html#kcentroid">centroid estimator</a>/novelty detector and
offline support vector <a href="ml.html#svm_one_class_trainer">one-class classification</a></li>
<li>Clustering algorithms: <a href="ml.html#find_clusters_using_kmeans">linear</a>
or <a href="ml.html#kkmeans">kernel k-means</a>,
<a href="ml.html#chinese_whispers">Chinese Whispers</a>, and
<a href="ml.html#newman_cluster">Newman clustering</a>. </li>
<li><a href="ml.html#rbf_network_trainer">Radial Basis Function Networks</a></li>
<li><a href="ml.html#mlp">Multi layer perceptrons</a> </li>
</ul>
</li>
<li><b>Graphical Model Inference Algorithms</b>
<ul>
<li><a href="bayes.html#bayesian_network_join_tree">Join tree</a> algorithm for exact inference in
a Bayesian network.</li>
<li><a href="bayes.html#bayesian_network_gibbs_sampler">Gibbs sampler</a> markov chain monte
carlo algorithm for approximate inference in a Bayesian network.</li>
<li>Routines for performing MAP inference in
<a href="optimization.html#find_max_factor_graph_viterbi">chain-structured</a>,
<a href="optimization.html#find_max_factor_graph_potts">Potts</a>, or
<a href="optimization.html#find_max_factor_graph_nmplp">general</a> factor graphs.</li>
</ul>
</li>
<li><b>Image Processing</b>
<ul>
<li>Routines for <a href="imaging.html#load_image">reading</a> and
<a href="imaging.html#save_bmp">writing</a> common image formats. </li>
<li>Automatic color space conversion between various pixel types</li>
<li>Common image operations such as edge finding and morphological operations</li>
<li>Implementations of the <a href="imaging.html#get_surf_points">SURF</a>,
<a href="imaging.html#hog_image">HOG</a>, and <a href="imaging.html#extract_fhog_features">FHOG</a>
feature extraction algorithms.</li>
<li>Tools for <a href="imaging.html#object_detector">detecting objects</a> in images including
<a href="imaging.html#get_frontal_face_detector">frontal face detection</a> and
<a href="imaging.html#shape_predictor">object pose estimation</a>.</li>
</ul>
</li>
<li><b>Data Compression and Integrity Algorithms</b>
<ul>
<li>A <a href="algorithms.html#crc32">CRC 32</a> object</li>

View File

@ -31,13 +31,16 @@
software components, each accompanied by extensive documentation and thorough debugging modes.
</p>
<p>
Since development began in 2002, dlib has grown to include a wide
variety of tools. In particular, it now contains software components
for dealing with networking, threads, graphical interfaces, complex
data structures, linear algebra, statistical machine learning, image
processing, data mining, XML and text parsing, numerical
optimization, Bayesian networks, and numerous other tasks. In
<a href='mailto:davis@dlib.net'>Davis King</a> has been the primary
author of dlib since development began in 2002. In that time
dlib has grown to include a wide variety of tools. In particular,
it now contains software components for dealing with networking,
threads, graphical interfaces, complex data structures, linear
algebra, statistical machine learning, image processing, data
mining, XML and text parsing, numerical optimization, Bayesian
networks, and numerous other tasks. In
recent years, much of the development has been focused on creating
a broad set of statistical machine learning tools. However, dlib
remains a general purpose library and <a href="howto_contribute.html">welcomes contributions</a> of high
@ -45,7 +48,7 @@
</p>
<p>
Part of the development philosophy of dlib is a dedication to
Core to the development philosophy of dlib is a dedication to
portability and ease of use. Therefore, all code in dlib is designed
to be as portable as possible and similarly to not require a user to
configure or install anything. To help achieve this, all platform

View File

@ -91,19 +91,19 @@
<name>Home</name>
<link>http://dlib.net</link>
</item>
<item>
<name>Dlib Blog</name>
<link>http://blog.dlib.net</link>
</item>
<item>
<name>Forums</name>
<link>https://sourceforge.net/p/dclib/discussion</link>
</item>
<item>
<name>Who uses dlib?</name>
<link>http://sourceforge.net/p/dclib/wiki/Known_users/</link>
</item>
</web>
<item>
<name>Dlib Blog</name>
<link>http://blog.dlib.net</link>
</item>
<item>
<name>Forums</name>
<link>https://sourceforge.net/p/dclib/discussion</link>
</item>
<item>
<name>Who uses dlib?</name>
<link>http://sourceforge.net/p/dclib/wiki/Known_users/</link>
</item>
<item>
<name>Introduction</name>