mirror of https://github.com/davisking/dlib.git
updated docs
This commit is contained in:
parent
d4f5e24587
commit
eacfe67b2d
|
@ -9,17 +9,17 @@
|
|||
|
||||
<p>
|
||||
|
||||
Dlib is a general purpose cross-platform C++ library designed using contract programming
|
||||
and modern C++ techniques.
|
||||
Dlib is a modern C++ toolkit containing machine learning algorithms and tools
|
||||
for creating complex software in C++ to solve real world problems.
|
||||
|
||||
It is open source software and licensed
|
||||
under the <a href="license.html">Boost Software License</a>.
|
||||
|
||||
The <a href="intro.html">introduction</a> contains everything you need to know to get
|
||||
started using the library. However, if you have any questions, comments, or complaints feel free to
|
||||
<a href='mailto:davis@dlib.net'>email me</a><web> or post in the
|
||||
sourceforge <a href='http://sourceforge.net/p/dclib/discussion'>Forums</a></web>.
|
||||
|
||||
started using the library. However, if after consulting the documentation, you have any questions, comments,
|
||||
or complaints feel free to post in the
|
||||
<a href='http://sourceforge.net/p/dclib/discussion'>forums</a>.
|
||||
|
||||
|
||||
</p>
|
||||
|
||||
|
@ -63,6 +63,96 @@
|
|||
abstraction layers or is pure ISO standard C++. </li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><b>Machine Learning Algorithms</b>
|
||||
<ul>
|
||||
<li>Conventional SMO based Support Vector Machines for <a href="ml.html#svm_nu_trainer">classification</a>
|
||||
and <a href="ml.html#svr_trainer">regression</a> </li>
|
||||
<li>Reduced-rank methods for large-scale <a href="ml.html#svm_c_ekm_trainer">classification</a>
|
||||
and <a href="ml.html#krr_trainer">regression</a></li>
|
||||
<li>Relevance vector machines for <a href="ml.html#rvm_trainer">classification</a>
|
||||
and <a href="ml.html#rvm_regression_trainer">regression</a> </li>
|
||||
<li>General purpose <a href="ml.html#one_vs_one_trainer">multiclass classification</a> tools</li>
|
||||
<li>A <a href="ml.html#svm_multiclass_linear_trainer">Multiclass SVM</a></li>
|
||||
<li>A tool for solving the optimization problem associated with
|
||||
<a href="ml.html#structural_svm_problem">structural support vector machines</a>. </li>
|
||||
<li>Structural SVM tools for <a href="ml.html#structural_sequence_labeling_trainer">sequence labeling</a> </li>
|
||||
<li>Structural SVM tools for solving <a href="ml.html#structural_assignment_trainer">assignment problems</a> </li>
|
||||
<li>Structural SVM tools for <a href="ml.html#structural_object_detection_trainer">object detection</a> in images </li>
|
||||
<li>Structural SVM tools for <a href="ml.html#structural_graph_labeling_trainer">labeling nodes</a> in graphs </li>
|
||||
<li>A large-scale <a href="ml.html#svm_rank_trainer">SVM-Rank</a> implementation</li>
|
||||
<li>An online <a href="ml.html#krls">kernel RLS regression</a> algorithm</li>
|
||||
<li>An online <a href="ml.html#svm_pegasos">SVM classification</a> algorithm</li>
|
||||
<li><a href="ml.html#vector_normalizer_frobmetric">Semidefinite Metric Learning</a></li>
|
||||
<li>An online kernelized <a href="ml.html#kcentroid">centroid estimator</a>/novelty detector and
|
||||
offline support vector <a href="ml.html#svm_one_class_trainer">one-class classification</a></li>
|
||||
<li>Clustering algorithms: <a href="ml.html#find_clusters_using_kmeans">linear</a>
|
||||
or <a href="ml.html#kkmeans">kernel k-means</a>,
|
||||
<a href="ml.html#chinese_whispers">Chinese Whispers</a>, and
|
||||
<a href="ml.html#newman_cluster">Newman clustering</a>. </li>
|
||||
<li><a href="ml.html#rbf_network_trainer">Radial Basis Function Networks</a></li>
|
||||
<li><a href="ml.html#mlp">Multi layer perceptrons</a> </li>
|
||||
</ul>
|
||||
</li>
|
||||
|
||||
<li><b>Numerical Algorithms</b>
|
||||
<ul>
|
||||
<li>A fast <a href="linear_algebra.html#matrix">matrix</a> object implemented using the expression
|
||||
templates technique and capable of using BLAS and LAPACK libraries when available.</li>
|
||||
<li>Numerous linear algebra and mathematical operations are defined for the matrix object such as the
|
||||
<a href="dlib/matrix/matrix_la_abstract.h.html#svd">singular value decomposition</a>,
|
||||
<a href="dlib/matrix/matrix_utilities_abstract.h.html#trans">transpose</a>,
|
||||
<a href="dlib/matrix/matrix_math_functions_abstract.h.html#sin">trig functions</a>, etc.</li>
|
||||
<li>General purpose unconstrained non-linear optimization algorithms using the
|
||||
<a href="optimization.html#cg_search_strategy">conjugate gradient</a>,
|
||||
<a href="optimization.html#bfgs_search_strategy">BFGS</a>, and
|
||||
<a href="optimization.html#lbfgs_search_strategy">L-BFGS</a>
|
||||
techniques</li>
|
||||
<li> <a href="optimization.html#solve_least_squares_lm">Levenberg-Marquardt</a> for solving non-linear
|
||||
least squares problems </li>
|
||||
<li>Box-constrained derivative-free optimization via the
|
||||
<a href="optimization.html#find_min_bobyqa">BOBYQA</a> algorithm</li>
|
||||
<li>An implementation of the <a href="optimization.html#oca">Optimized Cutting Plane Algorithm</a></li>
|
||||
<li><preserve_space><a href="optimization.html#solve_qp_using_smo">Several</a>
|
||||
<a href="optimization.html#solve_qp2_using_smo">quadratic</a>
|
||||
<a href="optimization.html#solve_qp3_using_smo">program</a>
|
||||
<a href="optimization.html#solve_qp4_using_smo">solvers</a></preserve_space> </li>
|
||||
<li>Combinatorial optimization tools for solving
|
||||
<a href="optimization.html#max_cost_assignment">optimal assignment</a> and
|
||||
<a href="optimization.html#min_cut">min cut/max flow</a> problems as well as
|
||||
the <a href="optimization.html#find_max_parse_cky">CKY algorithm</a> for finding the most probable parse tree</li>
|
||||
<li>A <a href="algorithms.html#bigint">big integer</a> object</li>
|
||||
<li>A <a href="algorithms.html#rand">random number</a> object</li>
|
||||
</ul>
|
||||
</li>
|
||||
|
||||
<li><b>Graphical Model Inference Algorithms</b>
|
||||
<ul>
|
||||
<li><a href="bayes.html#bayesian_network_join_tree">Join tree</a> algorithm for exact inference in
|
||||
a Bayesian network.</li>
|
||||
<li><a href="bayes.html#bayesian_network_gibbs_sampler">Gibbs sampler</a> markov chain monte
|
||||
carlo algorithm for approximate inference in a Bayesian network.</li>
|
||||
<li>Routines for performing MAP inference in
|
||||
<a href="optimization.html#find_max_factor_graph_viterbi">chain-structured</a>,
|
||||
<a href="optimization.html#find_max_factor_graph_potts">Potts</a>, or
|
||||
<a href="optimization.html#find_max_factor_graph_nmplp">general</a> factor graphs.</li>
|
||||
</ul>
|
||||
</li>
|
||||
|
||||
<li><b>Image Processing</b>
|
||||
<ul>
|
||||
<li>Routines for <a href="imaging.html#load_image">reading</a> and
|
||||
<a href="imaging.html#save_bmp">writing</a> common image formats. </li>
|
||||
<li>Automatic color space conversion between various pixel types</li>
|
||||
<li>Common image operations such as edge finding and morphological operations</li>
|
||||
<li>Implementations of the <a href="imaging.html#get_surf_points">SURF</a>,
|
||||
<a href="imaging.html#hog_image">HOG</a>, and <a href="imaging.html#extract_fhog_features">FHOG</a>
|
||||
feature extraction algorithms.</li>
|
||||
<li>Tools for <a href="imaging.html#object_detector">detecting objects</a> in images including
|
||||
<a href="imaging.html#get_frontal_face_detector">frontal face detection</a> and
|
||||
<a href="imaging.html#shape_predictor">object pose estimation</a>.</li>
|
||||
</ul>
|
||||
</li>
|
||||
|
||||
<li><b>Threading</b>
|
||||
<ul>
|
||||
<li>The library provides a portable and simple <a href="api.html#threads">threading API</a></li>
|
||||
|
@ -98,96 +188,6 @@
|
|||
</li>
|
||||
|
||||
|
||||
<li><b>Numerical Algorithms</b>
|
||||
<ul>
|
||||
<li>A fast <a href="linear_algebra.html#matrix">matrix</a> object implemented using the expression
|
||||
templates technique and capable of using BLAS and LAPACK libraries when available.</li>
|
||||
<li>Numerous linear algebra and mathematical operations are defined for the matrix object such as the
|
||||
<a href="dlib/matrix/matrix_la_abstract.h.html#svd">singular value decomposition</a>,
|
||||
<a href="dlib/matrix/matrix_utilities_abstract.h.html#trans">transpose</a>,
|
||||
<a href="dlib/matrix/matrix_math_functions_abstract.h.html#sin">trig functions</a>, etc.</li>
|
||||
<li>General purpose unconstrained non-linear optimization algorithms using the
|
||||
<a href="optimization.html#cg_search_strategy">conjugate gradient</a>,
|
||||
<a href="optimization.html#bfgs_search_strategy">BFGS</a>, and
|
||||
<a href="optimization.html#lbfgs_search_strategy">L-BFGS</a>
|
||||
techniques</li>
|
||||
<li> <a href="optimization.html#solve_least_squares_lm">Levenberg-Marquardt</a> for solving non-linear
|
||||
least squares problems </li>
|
||||
<li>Box-constrained derivative-free optimization via the
|
||||
<a href="optimization.html#find_min_bobyqa">BOBYQA</a> algorithm</li>
|
||||
<li>An implementation of the <a href="optimization.html#oca">Optimized Cutting Plane Algorithm</a></li>
|
||||
<li><preserve_space><a href="optimization.html#solve_qp_using_smo">Several</a>
|
||||
<a href="optimization.html#solve_qp2_using_smo">quadratic</a>
|
||||
<a href="optimization.html#solve_qp3_using_smo">program</a>
|
||||
<a href="optimization.html#solve_qp4_using_smo">solvers</a></preserve_space> </li>
|
||||
<li>Combinatorial optimization tools for solving
|
||||
<a href="optimization.html#max_cost_assignment">optimal assignment</a> and
|
||||
<a href="optimization.html#min_cut">min cut/max flow</a> problems as well as
|
||||
the <a href="optimization.html#find_max_parse_cky">CKY algorithm</a> for finding the most probable parse tree</li>
|
||||
<li>A <a href="algorithms.html#bigint">big integer</a> object</li>
|
||||
<li>A <a href="algorithms.html#rand">random number</a> object</li>
|
||||
</ul>
|
||||
</li>
|
||||
|
||||
<li><b>Machine Learning Algorithms</b>
|
||||
<ul>
|
||||
<li>Conventional SMO based Support Vector Machines for <a href="ml.html#svm_nu_trainer">classification</a>
|
||||
and <a href="ml.html#svr_trainer">regression</a> </li>
|
||||
<li>Reduced-rank methods for large-scale <a href="ml.html#svm_c_ekm_trainer">classification</a>
|
||||
and <a href="ml.html#krr_trainer">regression</a></li>
|
||||
<li>Relevance vector machines for <a href="ml.html#rvm_trainer">classification</a>
|
||||
and <a href="ml.html#rvm_regression_trainer">regression</a> </li>
|
||||
<li>General purpose <a href="ml.html#one_vs_one_trainer">multiclass classification</a> tools</li>
|
||||
<li>A <a href="ml.html#svm_multiclass_linear_trainer">Multiclass SVM</a></li>
|
||||
<li>A tool for solving the optimization problem associated with
|
||||
<a href="ml.html#structural_svm_problem">structural support vector machines</a>. </li>
|
||||
<li>Structural SVM tools for <a href="ml.html#structural_sequence_labeling_trainer">sequence labeling</a> </li>
|
||||
<li>Structural SVM tools for solving <a href="ml.html#structural_assignment_trainer">assignment problems</a> </li>
|
||||
<li>Structural SVM tools for <a href="ml.html#structural_object_detection_trainer">object detection</a> in images </li>
|
||||
<li>Structural SVM tools for <a href="ml.html#structural_graph_labeling_trainer">labeling nodes</a> in graphs </li>
|
||||
<li>A large-scale <a href="ml.html#svm_rank_trainer">SVM-Rank</a> implementation</li>
|
||||
<li>An online <a href="ml.html#krls">kernel RLS regression</a> algorithm</li>
|
||||
<li>An online <a href="ml.html#svm_pegasos">SVM classification</a> algorithm</li>
|
||||
<li><a href="ml.html#vector_normalizer_frobmetric">Semidefinite Metric Learning</a></li>
|
||||
<li>An online kernelized <a href="ml.html#kcentroid">centroid estimator</a>/novelty detector and
|
||||
offline support vector <a href="ml.html#svm_one_class_trainer">one-class classification</a></li>
|
||||
<li>Clustering algorithms: <a href="ml.html#find_clusters_using_kmeans">linear</a>
|
||||
or <a href="ml.html#kkmeans">kernel k-means</a>,
|
||||
<a href="ml.html#chinese_whispers">Chinese Whispers</a>, and
|
||||
<a href="ml.html#newman_cluster">Newman clustering</a>. </li>
|
||||
<li><a href="ml.html#rbf_network_trainer">Radial Basis Function Networks</a></li>
|
||||
<li><a href="ml.html#mlp">Multi layer perceptrons</a> </li>
|
||||
</ul>
|
||||
</li>
|
||||
|
||||
<li><b>Graphical Model Inference Algorithms</b>
|
||||
<ul>
|
||||
<li><a href="bayes.html#bayesian_network_join_tree">Join tree</a> algorithm for exact inference in
|
||||
a Bayesian network.</li>
|
||||
<li><a href="bayes.html#bayesian_network_gibbs_sampler">Gibbs sampler</a> markov chain monte
|
||||
carlo algorithm for approximate inference in a Bayesian network.</li>
|
||||
<li>Routines for performing MAP inference in
|
||||
<a href="optimization.html#find_max_factor_graph_viterbi">chain-structured</a>,
|
||||
<a href="optimization.html#find_max_factor_graph_potts">Potts</a>, or
|
||||
<a href="optimization.html#find_max_factor_graph_nmplp">general</a> factor graphs.</li>
|
||||
</ul>
|
||||
</li>
|
||||
|
||||
<li><b>Image Processing</b>
|
||||
<ul>
|
||||
<li>Routines for <a href="imaging.html#load_image">reading</a> and
|
||||
<a href="imaging.html#save_bmp">writing</a> common image formats. </li>
|
||||
<li>Automatic color space conversion between various pixel types</li>
|
||||
<li>Common image operations such as edge finding and morphological operations</li>
|
||||
<li>Implementations of the <a href="imaging.html#get_surf_points">SURF</a>,
|
||||
<a href="imaging.html#hog_image">HOG</a>, and <a href="imaging.html#extract_fhog_features">FHOG</a>
|
||||
feature extraction algorithms.</li>
|
||||
<li>Tools for <a href="imaging.html#object_detector">detecting objects</a> in images including
|
||||
<a href="imaging.html#get_frontal_face_detector">frontal face detection</a> and
|
||||
<a href="imaging.html#shape_predictor">object pose estimation</a>.</li>
|
||||
</ul>
|
||||
</li>
|
||||
|
||||
<li><b>Data Compression and Integrity Algorithms</b>
|
||||
<ul>
|
||||
<li>A <a href="algorithms.html#crc32">CRC 32</a> object</li>
|
||||
|
|
|
@ -31,13 +31,16 @@
|
|||
software components, each accompanied by extensive documentation and thorough debugging modes.
|
||||
</p>
|
||||
|
||||
|
||||
<p>
|
||||
Since development began in 2002, dlib has grown to include a wide
|
||||
variety of tools. In particular, it now contains software components
|
||||
for dealing with networking, threads, graphical interfaces, complex
|
||||
data structures, linear algebra, statistical machine learning, image
|
||||
processing, data mining, XML and text parsing, numerical
|
||||
optimization, Bayesian networks, and numerous other tasks. In
|
||||
<a href='mailto:davis@dlib.net'>Davis King</a> has been the primary
|
||||
author of dlib since development began in 2002. In that time
|
||||
dlib has grown to include a wide variety of tools. In particular,
|
||||
it now contains software components for dealing with networking,
|
||||
threads, graphical interfaces, complex data structures, linear
|
||||
algebra, statistical machine learning, image processing, data
|
||||
mining, XML and text parsing, numerical optimization, Bayesian
|
||||
networks, and numerous other tasks. In
|
||||
recent years, much of the development has been focused on creating
|
||||
a broad set of statistical machine learning tools. However, dlib
|
||||
remains a general purpose library and <a href="howto_contribute.html">welcomes contributions</a> of high
|
||||
|
@ -45,7 +48,7 @@
|
|||
</p>
|
||||
|
||||
<p>
|
||||
Part of the development philosophy of dlib is a dedication to
|
||||
Core to the development philosophy of dlib is a dedication to
|
||||
portability and ease of use. Therefore, all code in dlib is designed
|
||||
to be as portable as possible and similarly to not require a user to
|
||||
configure or install anything. To help achieve this, all platform
|
||||
|
|
|
@ -91,19 +91,19 @@
|
|||
<name>Home</name>
|
||||
<link>http://dlib.net</link>
|
||||
</item>
|
||||
<item>
|
||||
<name>Dlib Blog</name>
|
||||
<link>http://blog.dlib.net</link>
|
||||
</item>
|
||||
<item>
|
||||
<name>Forums</name>
|
||||
<link>https://sourceforge.net/p/dclib/discussion</link>
|
||||
</item>
|
||||
<item>
|
||||
<name>Who uses dlib?</name>
|
||||
<link>http://sourceforge.net/p/dclib/wiki/Known_users/</link>
|
||||
</item>
|
||||
</web>
|
||||
<item>
|
||||
<name>Dlib Blog</name>
|
||||
<link>http://blog.dlib.net</link>
|
||||
</item>
|
||||
<item>
|
||||
<name>Forums</name>
|
||||
<link>https://sourceforge.net/p/dclib/discussion</link>
|
||||
</item>
|
||||
<item>
|
||||
<name>Who uses dlib?</name>
|
||||
<link>http://sourceforge.net/p/dclib/wiki/Known_users/</link>
|
||||
</item>
|
||||
|
||||
<item>
|
||||
<name>Introduction</name>
|
||||
|
|
Loading…
Reference in New Issue