mirror of https://github.com/davisking/dlib.git
make update_parameters() a little more uniform
This commit is contained in:
parent
fd0145345e
commit
c79f64f52d
|
@ -1003,7 +1003,7 @@ namespace dlib
|
|||
template <typename solver_type>
|
||||
void update_parameters(std::vector<solver_type>& solvers, double learning_rate)
|
||||
{
|
||||
subnetwork->update_parameters(make_sstack(solvers), learning_rate);
|
||||
update_parameters(make_sstack(solvers), learning_rate);
|
||||
}
|
||||
|
||||
const tensor& get_parameter_gradient(
|
||||
|
@ -1369,6 +1369,12 @@ namespace dlib
|
|||
}
|
||||
}
|
||||
|
||||
template <typename solver_type>
|
||||
void update_parameters(std::vector<solver_type>& solvers, double learning_rate)
|
||||
{
|
||||
update_parameters(make_sstack(solvers), learning_rate);
|
||||
}
|
||||
|
||||
const tensor& get_parameter_gradient(
|
||||
) const { return params_grad; }
|
||||
|
||||
|
@ -1609,6 +1615,12 @@ namespace dlib
|
|||
subnetwork.update_parameters(solvers, learning_rate);
|
||||
}
|
||||
|
||||
template <typename solver_type>
|
||||
void update_parameters(std::vector<solver_type>& solvers, double learning_rate)
|
||||
{
|
||||
update_parameters(make_sstack(solvers), learning_rate);
|
||||
}
|
||||
|
||||
const tensor& get_parameter_gradient(
|
||||
) const { return params_grad; }
|
||||
|
||||
|
@ -1905,6 +1917,12 @@ namespace dlib
|
|||
subnetwork.update_parameters(solvers.pop(comp_layers_in_each_group*details.size()),learning_rate);
|
||||
}
|
||||
|
||||
template <typename solver_type>
|
||||
void update_parameters(std::vector<solver_type>& solvers, double learning_rate)
|
||||
{
|
||||
update_parameters(make_sstack(solvers), learning_rate);
|
||||
}
|
||||
|
||||
const subnet_type& subnet() const { return subnetwork; }
|
||||
subnet_type& subnet() { return subnetwork; }
|
||||
|
||||
|
@ -2135,6 +2153,12 @@ namespace dlib
|
|||
// nothing to do
|
||||
}
|
||||
|
||||
template <typename solver_type>
|
||||
void update_parameters(std::vector<solver_type>& solvers, double learning_rate)
|
||||
{
|
||||
update_parameters(make_sstack(solvers), learning_rate);
|
||||
}
|
||||
|
||||
const subnet_type& subnet() const { return input_layer; }
|
||||
subnet_type& subnet() { return input_layer; }
|
||||
|
||||
|
@ -2550,6 +2574,12 @@ namespace dlib
|
|||
subnetwork.update_parameters(solvers, learning_rate);
|
||||
}
|
||||
|
||||
template <typename solver_type>
|
||||
void update_parameters(std::vector<solver_type>& solvers, double learning_rate)
|
||||
{
|
||||
update_parameters(make_sstack(solvers), learning_rate);
|
||||
}
|
||||
|
||||
const subnet_type& subnet() const { return subnetwork; }
|
||||
subnet_type& subnet() { return subnetwork; }
|
||||
const loss_details_type& loss_details() const { return loss; }
|
||||
|
@ -2940,6 +2970,12 @@ namespace dlib
|
|||
subnetwork.update_parameters(solvers, learning_rate);
|
||||
}
|
||||
|
||||
template <typename solver_type>
|
||||
void update_parameters(std::vector<solver_type>& solvers, double learning_rate)
|
||||
{
|
||||
update_parameters(make_sstack(solvers), learning_rate);
|
||||
}
|
||||
|
||||
const tensor& get_parameter_gradient(
|
||||
) const { return params_grad; }
|
||||
|
||||
|
|
|
@ -639,6 +639,13 @@ namespace dlib
|
|||
- The solvers use the given learning rate.
|
||||
!*/
|
||||
|
||||
template <typename solver_type>
|
||||
void update_parameters(std::vector<solver_type>& solvers, double learning_rate)
|
||||
{ update_parameters(make_sstack(solvers), learning_rate); }
|
||||
/*!
|
||||
Convenience method for calling update_parameters()
|
||||
!*/
|
||||
|
||||
void clean(
|
||||
);
|
||||
/*!
|
||||
|
@ -1155,6 +1162,13 @@ namespace dlib
|
|||
- The solvers use the given learning rate.
|
||||
!*/
|
||||
|
||||
template <typename solver_type>
|
||||
void update_parameters(std::vector<solver_type>& solvers, double learning_rate)
|
||||
{ update_parameters(make_sstack(solvers), learning_rate); }
|
||||
/*!
|
||||
Convenience method for calling update_parameters()
|
||||
!*/
|
||||
|
||||
// -------------
|
||||
|
||||
void clean (
|
||||
|
|
Loading…
Reference in New Issue