mirror of https://github.com/davisking/dlib.git
Refactored code into a cleaner form.
This commit is contained in:
parent
1bb12d6a08
commit
bf0ed361d7
|
@ -85,7 +85,7 @@ namespace dlib
|
|||
) const;
|
||||
|
||||
void get_feature_vector (
|
||||
const std::vector<rectangle>& rects,
|
||||
const rectangle& rect,
|
||||
feature_vector_type& psi
|
||||
) const;
|
||||
|
||||
|
@ -646,7 +646,7 @@ namespace dlib
|
|||
>
|
||||
void scan_image_pyramid<Pyramid_type,Feature_extractor_type>::
|
||||
get_feature_vector (
|
||||
const std::vector<rectangle>& rects,
|
||||
const rectangle& rect,
|
||||
feature_vector_type& psi
|
||||
) const
|
||||
{
|
||||
|
@ -663,31 +663,25 @@ namespace dlib
|
|||
<< "\n\t this: " << this
|
||||
);
|
||||
|
||||
psi = 0;
|
||||
|
||||
|
||||
pyramid_type pyr;
|
||||
for (unsigned long i = 0; i < rects.size(); ++i)
|
||||
{
|
||||
rectangle mapped_rect;
|
||||
detection_template best_template;
|
||||
unsigned long best_level;
|
||||
get_mapped_rect_and_metadata (rects[i], mapped_rect, best_template, best_level);
|
||||
rectangle mapped_rect;
|
||||
detection_template best_template;
|
||||
unsigned long best_level;
|
||||
get_mapped_rect_and_metadata (rect, mapped_rect, best_template, best_level);
|
||||
|
||||
for (unsigned long j = 0; j < best_template.rects.size(); ++j)
|
||||
for (unsigned long j = 0; j < best_template.rects.size(); ++j)
|
||||
{
|
||||
const rectangle rect = best_template.rects[j];
|
||||
const unsigned long template_region_id = j;
|
||||
const unsigned long offset = feats_config.get_num_dimensions()*template_region_id;
|
||||
for (long r = rect.top(); r <= rect.bottom(); ++r)
|
||||
{
|
||||
const rectangle rect = best_template.rects[j];
|
||||
const unsigned long template_region_id = j;
|
||||
const unsigned long offset = feats_config.get_num_dimensions()*template_region_id;
|
||||
for (long r = rect.top(); r <= rect.bottom(); ++r)
|
||||
for (long c = rect.left(); c <= rect.right(); ++c)
|
||||
{
|
||||
for (long c = rect.left(); c <= rect.right(); ++c)
|
||||
const typename feature_extractor_type::descriptor_type& descriptor = feats[best_level](r,c);
|
||||
for (unsigned long k = 0; k < descriptor.size(); ++k)
|
||||
{
|
||||
const typename feature_extractor_type::descriptor_type& descriptor = feats[best_level](r,c);
|
||||
for (unsigned long k = 0; k < descriptor.size(); ++k)
|
||||
{
|
||||
psi(descriptor[k].first + offset) += descriptor[k].second;
|
||||
}
|
||||
psi(descriptor[k].first + offset) += descriptor[k].second;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -303,7 +303,7 @@ namespace dlib
|
|||
!*/
|
||||
|
||||
void get_feature_vector (
|
||||
const std::vector<rectangle>& rects,
|
||||
const rectangle& rects,
|
||||
feature_vector_type& psi
|
||||
) const;
|
||||
/*!
|
||||
|
@ -312,20 +312,21 @@ namespace dlib
|
|||
- get_num_detection_templates() > 0
|
||||
- psi.size() >= get_num_dimensions()
|
||||
ensures
|
||||
- This function allows you to determine the feature vector used for a sliding window location
|
||||
or the sum of such vectors for a set of locations.
|
||||
- if (rects was produced by a call to detect(), i.e. rects contains the contents of dets) then
|
||||
- #psi == the sum of feature vectors corresponding to the sliding window locations contained
|
||||
in rects.
|
||||
- Let w denote the w vector given to detect(), then we have:
|
||||
- dot(w,#psi) == sum of scores of the dets produced by detect()
|
||||
- This function allows you to determine the feature vector used for a sliding window location.
|
||||
Note that this vector is added to psi.
|
||||
- if (rect was produced by a call to detect(), i.e. rect contains an element of dets) then
|
||||
- #psi == psi + the feature vector corresponding to the sliding window location indicated
|
||||
by rect.
|
||||
- Let w denote the w vector given to detect(), then if we assigned psi to 0 before calling
|
||||
get_feature_vector() then we have:
|
||||
- dot(w,#psi) == the score produced by detect() for rect.
|
||||
- get_best_matching_rect(rect) == rect
|
||||
- else
|
||||
- Since scan_image_pyramid is a sliding window classifier system, not all possible rectangles can
|
||||
be output by detect(). So in the case where rects contains rectangles which could not arise
|
||||
from a call to detect(), this function will map the rectangles in rects to the nearest possible
|
||||
object boxes and then store the sum of feature vectors for the mapped rectangles into #psi.
|
||||
- for all valid i: get_best_matching_rect(rects[i]) == the rectangle rects[i] gets mapped to for
|
||||
feature extraction.
|
||||
be output by detect(). So in the case where rect could not arise from a call to detect(), this
|
||||
function will map rect to the nearest possible object box and then add the feature vector for
|
||||
the mapped rectangle into #psi.
|
||||
- get_best_matching_rect(rect) == the rectangle rect gets mapped to for feature extraction.
|
||||
!*/
|
||||
|
||||
};
|
||||
|
|
|
@ -156,10 +156,12 @@ namespace dlib
|
|||
scanner.load(images[idx]);
|
||||
psi.set_size(get_num_dimensions());
|
||||
std::vector<rectangle> mapped_rects;
|
||||
scanner.get_feature_vector(truth_rects[idx], psi);
|
||||
|
||||
psi = 0;
|
||||
for (unsigned long i = 0; i < truth_rects[idx].size(); ++i)
|
||||
{
|
||||
mapped_rects.push_back(scanner.get_best_matching_rect(truth_rects[idx][i]));
|
||||
scanner.get_feature_vector(truth_rects[idx][i], psi);
|
||||
}
|
||||
psi(scanner.get_num_dimensions()) = -1.0*truth_rects[idx].size();
|
||||
|
||||
|
@ -332,7 +334,8 @@ namespace dlib
|
|||
|
||||
psi.set_size(get_num_dimensions());
|
||||
psi = 0;
|
||||
scanner.get_feature_vector(final_dets, psi);
|
||||
for (unsigned long i = 0; i < final_dets.size(); ++i)
|
||||
scanner.get_feature_vector(final_dets[i], psi);
|
||||
|
||||
psi(scanner.get_num_dimensions()) = -1.0*final_dets.size();
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue