mirror of https://github.com/davisking/dlib.git
Added a SVR example program
--HG-- extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%404061
This commit is contained in:
parent
73c0598c1b
commit
b5a3dbda00
|
@ -84,10 +84,10 @@ add_example(surf_ex)
|
|||
add_example(svm_ex)
|
||||
add_example(svm_pegasos_ex)
|
||||
add_example(svm_sparse_ex)
|
||||
add_example(svr_ex)
|
||||
add_example(threaded_object_ex)
|
||||
add_example(thread_function_ex)
|
||||
add_example(thread_pool_ex)
|
||||
add_example(threads_ex)
|
||||
add_example(timer_ex)
|
||||
add_example(xml_parser_ex)
|
||||
|
||||
|
|
|
@ -0,0 +1,88 @@
|
|||
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
||||
/*
|
||||
This is an example illustrating the use of the epsilon-insensitive support vector
|
||||
regression object from the dlib C++ Library.
|
||||
|
||||
In this example we will draw some points from the sinc() function and do a
|
||||
non-linear regression on them.
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
#include "dlib/svm.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace dlib;
|
||||
|
||||
// Here is the sinc function we will be trying to learn with the svr_trainer
|
||||
// object.
|
||||
double sinc(double x)
|
||||
{
|
||||
if (x == 0)
|
||||
return 1;
|
||||
return sin(x)/x;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
// Here we declare that our samples will be 1 dimensional column vectors.
|
||||
typedef matrix<double,1,1> sample_type;
|
||||
|
||||
// Now we are making a typedef for the kind of kernel we want to use. I picked the
|
||||
// radial basis kernel because it only has one parameter and generally gives good
|
||||
// results without much fiddling.
|
||||
typedef radial_basis_kernel<sample_type> kernel_type;
|
||||
|
||||
|
||||
std::vector<sample_type> samples;
|
||||
std::vector<double> targets;
|
||||
|
||||
// The first thing we do is pick a few training points from the sinc() function.
|
||||
sample_type m;
|
||||
for (double x = -10; x <= 4; x += 1)
|
||||
{
|
||||
m(0) = x;
|
||||
|
||||
samples.push_back(m);
|
||||
targets.push_back(sinc(x));
|
||||
}
|
||||
|
||||
// Now setup a SVR trainer object. It has three parameters, the kernel and
|
||||
// two parameters specific to SVR.
|
||||
svr_trainer<kernel_type> trainer;
|
||||
trainer.set_kernel(kernel_type(0.1));
|
||||
|
||||
// This parameter is the usual regularization parameter. It determines the trade-off
|
||||
// between trying to reduce the training error or allowing more errors but hopefully
|
||||
// improving the generalization of the resulting function. Larger values encourage exact
|
||||
// fitting while smaller values of C may encourage better generalization.
|
||||
trainer.set_c(10);
|
||||
|
||||
// Epsilon-insensitive regression means we do regression but stop trying to fit a data
|
||||
// point once it is "close enough" to its target value. This parameter is the value that
|
||||
// controls what we mean by "close enough". In this case, I'm saying I'm happy if the
|
||||
// resulting regression function gets within 0.001 of the target value.
|
||||
trainer.set_epsilon_insensitivity(0.001);
|
||||
|
||||
// Now do the training and save the results
|
||||
decision_function<kernel_type> df = trainer.train(samples, targets);
|
||||
|
||||
// now we output the value of the sinc function for a few test points as well as the
|
||||
// value predicted by SVR.
|
||||
m(0) = 2.5; cout << sinc(m(0)) << " " << df(m) << endl;
|
||||
m(0) = 0.1; cout << sinc(m(0)) << " " << df(m) << endl;
|
||||
m(0) = -4; cout << sinc(m(0)) << " " << df(m) << endl;
|
||||
m(0) = 5.0; cout << sinc(m(0)) << " " << df(m) << endl;
|
||||
|
||||
// The output is as follows:
|
||||
// 0.239389 0.23905
|
||||
// 0.998334 0.997331
|
||||
// -0.189201 -0.187636
|
||||
// -0.191785 -0.218924
|
||||
|
||||
// The first column is the true value of the sinc function and the second
|
||||
// column is the output from the SVR estimate.
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue