Added a SVR example program

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%404061
This commit is contained in:
Davis King 2010-12-31 14:17:51 +00:00
parent 73c0598c1b
commit b5a3dbda00
2 changed files with 89 additions and 1 deletions

View File

@ -84,10 +84,10 @@ add_example(surf_ex)
add_example(svm_ex)
add_example(svm_pegasos_ex)
add_example(svm_sparse_ex)
add_example(svr_ex)
add_example(threaded_object_ex)
add_example(thread_function_ex)
add_example(thread_pool_ex)
add_example(threads_ex)
add_example(timer_ex)
add_example(xml_parser_ex)

88
examples/svr_ex.cpp Normal file
View File

@ -0,0 +1,88 @@
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This is an example illustrating the use of the epsilon-insensitive support vector
regression object from the dlib C++ Library.
In this example we will draw some points from the sinc() function and do a
non-linear regression on them.
*/
#include <iostream>
#include <vector>
#include "dlib/svm.h"
using namespace std;
using namespace dlib;
// Here is the sinc function we will be trying to learn with the svr_trainer
// object.
double sinc(double x)
{
if (x == 0)
return 1;
return sin(x)/x;
}
int main()
{
// Here we declare that our samples will be 1 dimensional column vectors.
typedef matrix<double,1,1> sample_type;
// Now we are making a typedef for the kind of kernel we want to use. I picked the
// radial basis kernel because it only has one parameter and generally gives good
// results without much fiddling.
typedef radial_basis_kernel<sample_type> kernel_type;
std::vector<sample_type> samples;
std::vector<double> targets;
// The first thing we do is pick a few training points from the sinc() function.
sample_type m;
for (double x = -10; x <= 4; x += 1)
{
m(0) = x;
samples.push_back(m);
targets.push_back(sinc(x));
}
// Now setup a SVR trainer object. It has three parameters, the kernel and
// two parameters specific to SVR.
svr_trainer<kernel_type> trainer;
trainer.set_kernel(kernel_type(0.1));
// This parameter is the usual regularization parameter. It determines the trade-off
// between trying to reduce the training error or allowing more errors but hopefully
// improving the generalization of the resulting function. Larger values encourage exact
// fitting while smaller values of C may encourage better generalization.
trainer.set_c(10);
// Epsilon-insensitive regression means we do regression but stop trying to fit a data
// point once it is "close enough" to its target value. This parameter is the value that
// controls what we mean by "close enough". In this case, I'm saying I'm happy if the
// resulting regression function gets within 0.001 of the target value.
trainer.set_epsilon_insensitivity(0.001);
// Now do the training and save the results
decision_function<kernel_type> df = trainer.train(samples, targets);
// now we output the value of the sinc function for a few test points as well as the
// value predicted by SVR.
m(0) = 2.5; cout << sinc(m(0)) << " " << df(m) << endl;
m(0) = 0.1; cout << sinc(m(0)) << " " << df(m) << endl;
m(0) = -4; cout << sinc(m(0)) << " " << df(m) << endl;
m(0) = 5.0; cout << sinc(m(0)) << " " << df(m) << endl;
// The output is as follows:
// 0.239389 0.23905
// 0.998334 0.997331
// -0.189201 -0.187636
// -0.191785 -0.218924
// The first column is the true value of the sinc function and the second
// column is the output from the SVR estimate.
}