mirror of https://github.com/davisking/dlib.git
Switched this code to use the oca object's ability to force a weight to 1
instead of rolling its own implementation.
This commit is contained in:
parent
277b47ae58
commit
b445ddbd8d
|
@ -37,15 +37,13 @@ namespace dlib
|
|||
const std::vector<ranking_pair<sample_type> >& samples_,
|
||||
const bool be_verbose_,
|
||||
const scalar_type eps_,
|
||||
const unsigned long max_iter,
|
||||
const bool last_weight_1_
|
||||
const unsigned long max_iter
|
||||
) :
|
||||
samples(samples_),
|
||||
C(C_),
|
||||
be_verbose(be_verbose_),
|
||||
eps(eps_),
|
||||
max_iterations(max_iter),
|
||||
last_weight_1(last_weight_1_)
|
||||
max_iterations(max_iter)
|
||||
{
|
||||
}
|
||||
|
||||
|
@ -113,8 +111,6 @@ namespace dlib
|
|||
// rank flips. So a risk of 0.1 would mean that rank flips happen < 10% of the
|
||||
// time.
|
||||
|
||||
if(last_weight_1)
|
||||
w(w.size()-1) = 1;
|
||||
|
||||
std::vector<double> rel_scores;
|
||||
std::vector<double> nonrel_scores;
|
||||
|
@ -163,12 +159,6 @@ namespace dlib
|
|||
|
||||
risk *= scale;
|
||||
subgradient = scale*subgradient;
|
||||
|
||||
if(last_weight_1)
|
||||
{
|
||||
w(w.size()-1) = 0;
|
||||
subgradient(w.size()-1) = 0;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
|
@ -183,7 +173,6 @@ namespace dlib
|
|||
const bool be_verbose;
|
||||
const scalar_type eps;
|
||||
const unsigned long max_iterations;
|
||||
const bool last_weight_1;
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
@ -198,12 +187,11 @@ namespace dlib
|
|||
const std::vector<ranking_pair<sample_type> >& samples,
|
||||
const bool be_verbose,
|
||||
const scalar_type eps,
|
||||
const unsigned long max_iterations,
|
||||
const bool last_weight_1
|
||||
const unsigned long max_iterations
|
||||
)
|
||||
{
|
||||
return oca_problem_ranking_svm<matrix_type, sample_type>(
|
||||
C, samples, be_verbose, eps, max_iterations, last_weight_1);
|
||||
C, samples, be_verbose, eps, max_iterations);
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
@ -385,12 +373,17 @@ namespace dlib
|
|||
num_nonnegative = num_dims;
|
||||
}
|
||||
|
||||
solver( make_oca_problem_ranking_svm<w_type>(C, samples, verbose, eps, max_iterations, last_weight_1),
|
||||
w,
|
||||
num_nonnegative);
|
||||
unsigned long force_weight_1_idx = std::numeric_limits<unsigned long>::max();
|
||||
if (last_weight_1)
|
||||
{
|
||||
force_weight_1_idx = num_dims-1;
|
||||
}
|
||||
|
||||
solver( make_oca_problem_ranking_svm<w_type>(C, samples, verbose, eps, max_iterations),
|
||||
w,
|
||||
num_nonnegative,
|
||||
force_weight_1_idx);
|
||||
|
||||
if(last_weight_1)
|
||||
w(w.size()-1) = 1;
|
||||
|
||||
// put the solution into a decision function and then return it
|
||||
decision_function<kernel_type> df;
|
||||
|
|
Loading…
Reference in New Issue