Added a thread pool example

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%402634
This commit is contained in:
Davis King 2008-11-06 04:13:03 +00:00
parent 10cccc0451
commit a8a198d3ce
2 changed files with 146 additions and 0 deletions

View File

@ -60,6 +60,7 @@ add_example(std_allocator_ex)
add_example(svm_ex) add_example(svm_ex)
add_example(threaded_object_ex) add_example(threaded_object_ex)
add_example(thread_function_ex) add_example(thread_function_ex)
add_example(thread_pool_ex)
add_example(threads_ex) add_example(threads_ex)
add_example(timer_ex) add_example(timer_ex)
add_example(xml_parser_ex) add_example(xml_parser_ex)

145
examples/thread_pool_ex.cpp Normal file
View File

@ -0,0 +1,145 @@
/*
This is an example illustrating the use of the thread_pool
object from the dlib C++ Library.
This is a very simple example. It creates a thread pool with 3
threads and then sends a few simple tasks to the pool.
*/
#include "dlib/threads.h"
#include "dlib/misc_api.h" // for dlib::sleep
#include "dlib/logger.h"
using namespace dlib;
// Here we make an instance of the thread pool object
thread_pool tp(3);
// We will be using the dlib logger object to print out messages in this example
// because its output is timestamped and labeled with the thread that the log
// message came from. So this will make it easier to see what is going on in
// this example. Here we make an instance of the logger. See the logger
// documentation and examples for detailed information regarding its use.
logger dlog("main");
// ----------------------------------------------------------------------------------------
class test
{
/*
The thread_pool accepts "tasks" from the user and schedules them
for execution in one of its threads when one becomes available. Each
task is just a request to call a member function on a particular object.
So here we create a class called test with a few member functions which
we will have the thread pool call as tasks.
*/
public:
void task_0()
{
dlog << LINFO << "task_0 start";
// Here we ask the thread pool to call this->subtask() three different times
// with different arguments. Note that calls to add_task() will return
// immediately if there is an available thread to hand the task off to, however,
// if there isn't a thread ready then add_task blocks until there is such a thread.
// Also note that since task_0() is executed within the thread pool (see main() below)
// calls to add_task() will execute the requested task within the calling thread
// in cases where the thread pool is full. This means it is safe to have
// tasks running in the thread pool spawn sub tasks which is what we are doing here.
tp.add_task(*this,&test::subtask,1); // schedule call to this->subtask(1)
tp.add_task(*this,&test::subtask,2); // schedule call to this->subtask(2)
tp.add_task(*this,&test::subtask,3); // schedule call to this->subtask(3)
// wait_for_all_tasks() is a function that blocks until all tasks
// submitted to the thread pool by the thread calling wait_for_all_tasks()
// finish. So this call blocks until the 3 tasks above are done.
tp.wait_for_all_tasks();
dlog << LINFO << "task_0 end" ;
}
void subtask(long a)
{
dlib::sleep(200);
dlog << LINFO << "subtask end " << a;
}
void task_1(long a, long b)
{
dlog << LINFO << "task_1 start: " << a << ", " << b;
dlib::sleep(700);
dlog << LINFO << "task_1 end: " << a << ", " << b;
}
};
// ----------------------------------------------------------------------------------------
int main()
{
// tell the logger to print out everything
dlog.set_level(LALL);
test a;
dlog << LINFO << "schedule a few tasks";
// schedule a call to a.task_1(10,11)
tp.add_task(a, &test::task_1, 10, 11);
// schedule the thread pool to call a.task_0().
uint64 id = tp.add_task(a, &test::task_0);
// schedule a call to a.task_1(12,13)
tp.add_task(a, &test::task_1, 12, 13);
dlog << LINFO << "wait for a.task_0() to finish";
// now wait for our a.task_0() task to finish. To do this we use the id
// returned by add_task to reference the task we want to wait for.
tp.wait_for_task(id);
dlog << LINFO << "a.task_0() finished, now start another task_1() call";
// schedule a call to a.task_1(14,15)
tp.add_task(a, &test::task_1, 14, 15);
dlog << LINFO << "wait for all tasks to finish";
// here we wait for all tasks which were requested by the main thread
// to complete.
tp.wait_for_all_tasks();
dlog << LINFO << "all tasks finished";
/* A possible run of this program might produce the following output (the first column is
the time the log message occurred and the value in [] is the thread id for the thread
that generated the log message):
0 INFO [0] main: schedule a few tasks
0 INFO [1] main: task_1 start: 10, 11
0 INFO [2] main: task_0 start
200 INFO [2] main: subtask end 2
200 INFO [3] main: subtask end 1
200 INFO [3] main: task_1 start: 12, 13
201 INFO [0] main: wait for a.task_0() to finish
400 INFO [2] main: subtask end 3
400 INFO [2] main: task_0 end
400 INFO [0] main: a.task_0() finished, now start another task_1() call
401 INFO [2] main: task_1 start: 14, 15
401 INFO [0] main: wait for all tasks to finish
700 INFO [1] main: task_1 end: 10, 11
901 INFO [3] main: task_1 end: 12, 13
1101 INFO [2] main: task_1 end: 14, 15
1101 INFO [0] main: all tasks finished
*/
}