mirror of https://github.com/davisking/dlib.git
Added another overload of poly_min_extrap() and also improved the speed of
backtracking_line_search() by making it use 3rd degree polynomial interpolation after the first step. Also made it more robust to alpha inputs with improper signs.
This commit is contained in:
parent
53c908e72c
commit
8199ae1a48
|
@ -183,6 +183,57 @@ namespace dlib
|
|||
return put_in_range(0,1,alpha);
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
inline double poly_min_extrap (
|
||||
double f0,
|
||||
double d0,
|
||||
double x1,
|
||||
double f_x1,
|
||||
double x2,
|
||||
double f_x2
|
||||
)
|
||||
{
|
||||
DLIB_ASSERT(0 < x1 && x1 < x2,"Invalid inputs were given to this function");
|
||||
// The contents of this function follow the equations described on page 58 of the
|
||||
// book Numerical Optimization by Nocedal and Wright, second edition.
|
||||
matrix<double,2,2> m;
|
||||
matrix<double,2,1> v;
|
||||
|
||||
const double aa2 = x2*x2;
|
||||
const double aa1 = x1*x1;
|
||||
m = aa2, -aa1,
|
||||
-aa2*x2, aa1*x1;
|
||||
v = f_x1 - f0 - d0*x1,
|
||||
f_x2 - f0 - d0*x2;
|
||||
|
||||
|
||||
double temp = aa2*aa1*(x1-x2);
|
||||
|
||||
// just take a guess if this happens
|
||||
if (temp == 0)
|
||||
{
|
||||
return x1/2.0;
|
||||
}
|
||||
|
||||
matrix<double,2,1> temp2;
|
||||
temp2 = m*v/temp;
|
||||
const double a = temp2(0);
|
||||
const double b = temp2(1);
|
||||
|
||||
temp = b*b - 3*a*d0;
|
||||
if (temp < 0 || a == 0)
|
||||
{
|
||||
// This is probably a line so just pick the lowest point
|
||||
if (f0 < f_x2)
|
||||
return 0;
|
||||
else
|
||||
return x2;
|
||||
}
|
||||
temp = (-b + std::sqrt(temp))/(3*a);
|
||||
return put_in_range(0, x2, temp);
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
inline double lagrange_poly_min_extrap (
|
||||
|
@ -447,11 +498,17 @@ namespace dlib
|
|||
<< "\n\t max_iter: " << max_iter
|
||||
);
|
||||
|
||||
// If the gradient is telling us we need to search backwards then that is what we
|
||||
// will do.
|
||||
if (d0 > 0 && alpha > 0)
|
||||
// make sure alpha is going in the right direction. That is, it should be opposite
|
||||
// the direction of the gradient.
|
||||
if ((d0 > 0 && alpha > 0) ||
|
||||
(d0 < 0 && alpha < 0))
|
||||
{
|
||||
alpha *= -1;
|
||||
}
|
||||
|
||||
bool have_prev_alpha = false;
|
||||
double prev_alpha = 0;
|
||||
double prev_val = 0;
|
||||
unsigned long iter = 0;
|
||||
while (true)
|
||||
{
|
||||
|
@ -466,12 +523,26 @@ namespace dlib
|
|||
// Interpolate a new alpha. We also make sure the step by which we
|
||||
// reduce alpha is not super small.
|
||||
double step;
|
||||
if (d0 < 0)
|
||||
step = put_in_range(0.1,0.9, poly_min_extrap(f0, d0, val));
|
||||
if (!have_prev_alpha)
|
||||
{
|
||||
if (d0 < 0)
|
||||
step = alpha*put_in_range(0.1,0.9, poly_min_extrap(f0, d0, val));
|
||||
else
|
||||
step = alpha*put_in_range(0.1,0.9, poly_min_extrap(f0, -d0, val));
|
||||
have_prev_alpha = true;
|
||||
}
|
||||
else
|
||||
step = put_in_range(0.1,0.9, poly_min_extrap(f0, -d0, val));
|
||||
{
|
||||
if (d0 < 0)
|
||||
step = put_in_range(0.1*alpha,0.9*alpha, poly_min_extrap(f0, d0, alpha, val, prev_alpha, prev_val));
|
||||
else
|
||||
step = put_in_range(0.1*alpha,0.9*alpha, -poly_min_extrap(f0, -d0, -alpha, val, -prev_alpha, prev_val));
|
||||
}
|
||||
|
||||
alpha *= step;
|
||||
prev_alpha = alpha;
|
||||
prev_val = val;
|
||||
|
||||
alpha = step;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -119,6 +119,28 @@ namespace dlib
|
|||
- returns the point in the range [0,1] that minimizes the polynomial c(x)
|
||||
!*/
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
inline double poly_min_extrap (
|
||||
double f0,
|
||||
double d0,
|
||||
double x1,
|
||||
double f_x1,
|
||||
double x2,
|
||||
double f_x2
|
||||
)
|
||||
/*!
|
||||
requires
|
||||
- 0 < x1 < x2
|
||||
ensures
|
||||
- let f(x) be a 3rd degree polynomial such that:
|
||||
- f(0) == f0
|
||||
- derivative of f(x) at x==0 is d0
|
||||
- f(x1) == f_x1
|
||||
- f(x2) == f_x2
|
||||
- returns the point in the range [0,x2] that minimizes the polynomial f(x)
|
||||
!*/
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
inline double lagrange_poly_min_extrap (
|
||||
|
|
Loading…
Reference in New Issue