mirror of https://github.com/davisking/dlib.git
Improved example a little.
--HG-- extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%403631
This commit is contained in:
parent
5c05797532
commit
812057913e
|
@ -214,10 +214,8 @@ void test_empirical_kernel_map (
|
|||
|
||||
// Now lets do something more interesting. The following loop finds the centroids
|
||||
// of the two classes of data.
|
||||
sample_type class1_center(ekm.out_vector_size());
|
||||
sample_type class2_center(ekm.out_vector_size());
|
||||
class1_center = 0;
|
||||
class2_center = 0;
|
||||
sample_type class1_center;
|
||||
sample_type class2_center;
|
||||
for (unsigned long i = 0; i < projected_samples.size(); ++i)
|
||||
{
|
||||
if (labels[i] == 1)
|
||||
|
@ -234,9 +232,8 @@ void test_empirical_kernel_map (
|
|||
// Now classify points by which center they are nearest. Recall that the data
|
||||
// is made up of two concentric circles. Normally you can't separate two concentric
|
||||
// circles by checking which points are nearest to each center since they have the same
|
||||
// centers. All the points would just associate to the smallest circle. However,
|
||||
// the kernel trick makes the data separable and the loop below will perfectly
|
||||
// classify each data point.
|
||||
// centers. However, the kernel trick makes the data separable and the loop below will
|
||||
// perfectly classify each data point.
|
||||
for (unsigned long i = 0; i < projected_samples.size(); ++i)
|
||||
{
|
||||
double distance_to_class1 = length(projected_samples[i] - class1_center);
|
||||
|
|
Loading…
Reference in New Issue