diff --git a/dlib/test/dnn.cpp b/dlib/test/dnn.cpp index 005035cd1..5893e1160 100644 --- a/dlib/test/dnn.cpp +++ b/dlib/test/dnn.cpp @@ -154,7 +154,7 @@ namespace { using namespace dlib::tt; print_spinner(); - resizable_tensor src(5,5), gamma(1,5), beta(1,5), dest, dest2, means, vars, gradient_input(5,5); + resizable_tensor src(5,5), gamma(1,5), beta(1,5), dest, dest2, dest3, means, vars, gradient_input(5,5); src = matrix_cast(gaussian_randm(5,5, 0)); gamma = matrix_cast(gaussian_randm(1,5, 1)); beta = matrix_cast(gaussian_randm(1,5, 2)); @@ -171,6 +171,8 @@ namespace running_variances = mat(running_variances)/scale; batch_normalize_inference(dest2, src, gamma, beta, running_means, running_variances); DLIB_TEST_MSG(max(abs(mat(dest2)-mat(dest))) < 1e-5, max(abs(mat(dest2)-mat(dest)))); + cpu::batch_normalize_inference(dest3, src, gamma, beta, running_means, running_variances); + DLIB_TEST_MSG(max(abs(mat(dest3)-mat(dest))) < 1e-5, max(abs(mat(dest3)-mat(dest)))); auto grad_src = [&](long idx) { @@ -237,7 +239,7 @@ namespace { using namespace dlib::tt; print_spinner(); - resizable_tensor src(5,5,4,4), gamma(1,5), beta(1,5), dest, dest2, means, vars, gradient_input(5,5,4,4); + resizable_tensor src(5,5,4,4), gamma(1,5), beta(1,5), dest, dest2, dest3, means, vars, gradient_input(5,5,4,4); src = matrix_cast(gaussian_randm(5,5*4*4, 0)); gamma = matrix_cast(gaussian_randm(1,5, 1)); beta = matrix_cast(gaussian_randm(1,5, 2)); @@ -255,6 +257,8 @@ namespace running_variances = mat(running_variances)/scale; batch_normalize_conv_inference(dest2, src, gamma, beta, running_means, running_variances); DLIB_TEST(max(abs(mat(dest2)-mat(dest))) < 1e-5); + cpu::batch_normalize_conv_inference(dest3, src, gamma, beta, running_means, running_variances); + DLIB_TEST(max(abs(mat(dest3)-mat(dest))) < 1e-5); auto grad_src = [&](long idx) { @@ -1233,6 +1237,7 @@ namespace test_avg_pool(3,3,2,2); test_avg_pool(2,2,2,2); test_avg_pool(4,5,3,1); + test_avg_pool(100,100,100,100); test_tanh(); test_softmax(); test_sigmoid();