mirror of https://github.com/davisking/dlib.git
Made test a little more numerically robust.
This commit is contained in:
parent
5bcfa6853e
commit
6d32e8c804
|
@ -116,18 +116,17 @@ namespace
|
|||
|
||||
ovo_trainer trainer;
|
||||
|
||||
typedef polynomial_kernel<sample_type> poly_kernel;
|
||||
typedef histogram_intersection_kernel<sample_type> hist_kernel;
|
||||
typedef radial_basis_kernel<sample_type> rbf_kernel;
|
||||
|
||||
// make the binary trainers and set some parameters
|
||||
krr_trainer<rbf_kernel> rbf_trainer;
|
||||
svm_nu_trainer<poly_kernel> poly_trainer;
|
||||
poly_trainer.set_kernel(poly_kernel(0.1, 1, 2));
|
||||
svm_nu_trainer<hist_kernel> hist_trainer;
|
||||
rbf_trainer.set_kernel(rbf_kernel(0.1));
|
||||
|
||||
|
||||
trainer.set_trainer(rbf_trainer);
|
||||
trainer.set_trainer(poly_trainer, 1, 2);
|
||||
trainer.set_trainer(hist_trainer, 1, 2);
|
||||
|
||||
randomize_samples(samples, labels);
|
||||
matrix<double> res = cross_validate_multiclass_trainer(trainer, samples, labels, 2);
|
||||
|
@ -143,8 +142,7 @@ namespace
|
|||
|
||||
// test using a normalized_function with a one_vs_one_decision_function
|
||||
{
|
||||
poly_trainer.set_kernel(poly_kernel(1.1, 1, 2));
|
||||
trainer.set_trainer(poly_trainer, 1, 2);
|
||||
trainer.set_trainer(hist_trainer, 1, 2);
|
||||
vector_normalizer<sample_type> normalizer;
|
||||
normalizer.train(samples);
|
||||
for (unsigned long i = 0; i < samples.size(); ++i)
|
||||
|
@ -156,8 +154,7 @@ namespace
|
|||
DLIB_TEST(ndf(samples[40]) == labels[40]);
|
||||
DLIB_TEST(ndf(samples[90]) == labels[90]);
|
||||
DLIB_TEST(ndf(samples[120]) == labels[120]);
|
||||
poly_trainer.set_kernel(poly_kernel(0.1, 1, 2));
|
||||
trainer.set_trainer(poly_trainer, 1, 2);
|
||||
trainer.set_trainer(hist_trainer, 1, 2);
|
||||
print_spinner();
|
||||
}
|
||||
|
||||
|
@ -173,7 +170,7 @@ namespace
|
|||
|
||||
|
||||
one_vs_one_decision_function<ovo_trainer,
|
||||
decision_function<poly_kernel>, // This is the output of the poly_trainer
|
||||
decision_function<hist_kernel>, // This is the output of the hist_trainer
|
||||
decision_function<rbf_kernel> // This is the output of the rbf_trainer
|
||||
> df2, df3;
|
||||
|
||||
|
|
Loading…
Reference in New Issue